Industrial design applications, nonresident, by count

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Albania Albania 433 -15.1% 44
United Arab Emirates United Arab Emirates 869 +37.1% 28
Argentina Argentina 893 +3.72% 27
Armenia Armenia 282 -25.2% 57
Australia Australia 5,536 +17.9% 10
Austria Austria 168 +205% 63
Azerbaijan Azerbaijan 597 +8.35% 36
Bangladesh Bangladesh 86 +8.86% 71
Bulgaria Bulgaria 86 -65.3% 71
Bahrain Bahrain 114 +90% 67
Bosnia & Herzegovina Bosnia & Herzegovina 678 -2.31% 32
Belarus Belarus 511 +99.6% 40
Belize Belize 294 +10.9% 54
Bolivia Bolivia 38 +81% 85
Brazil Brazil 2,191 +9.28% 19
Brunei Brunei 72 -58.1% 75
Botswana Botswana 52 -43.5% 80
Canada Canada 8,776 +29.2% 5
Switzerland Switzerland 8,405 +16% 6
Chile Chile 346 -9.42% 49
China China 19,853 +10.2% 3
Colombia Colombia 466 +9.13% 42
Costa Rica Costa Rica 66 -4.35% 77
Cuba Cuba 1 -75% 97
Czechia Czechia 86 +34.4% 71
Germany Germany 3,549 -27.2% 15
Djibouti Djibouti 8 -77.8% 94
Denmark Denmark 185 -36% 62
Dominican Republic Dominican Republic 17 +41.7% 91
Algeria Algeria 282 +6.42% 57
Ecuador Ecuador 83 +31.7% 72
Egypt Egypt 674 -20.1% 33
Spain Spain 284 -6.89% 56
Estonia Estonia 90 -10% 70
Finland Finland 74 -24.5% 74
France France 1,224 -24.8% 24
United Kingdom United Kingdom 46,481 +309% 1
Georgia Georgia 379 -17.1% 46
Gambia Gambia 10 +900% 93
Greece Greece 162 -40.9% 64
Guatemala Guatemala 57 -56.5% 79
Hong Kong SAR China Hong Kong SAR China 2,912 +4.37% 16
Croatia Croatia 428 -38.7% 45
Hungary Hungary 39 -56.2% 84
Indonesia Indonesia 1,409 +15.5% 20
India India 3,949 +3.08% 13
Ireland Ireland 19 +35.7% 90
Iran Iran 113 +28.4% 68
Iceland Iceland 457 +12.6% 43
Israel Israel 1,329 +30.8% 22
Italy Italy 308 +0.654% 52
Jamaica Jamaica 6 0% 95
Jordan Jordan 15 0% 92
Japan Japan 10,696 +15.5% 4
Kazakhstan Kazakhstan 196 +15.3% 61
Kenya Kenya 27 +42.1% 88
Kyrgyzstan Kyrgyzstan 314 -3.09% 51
South Korea South Korea 8,015 +17.6% 7
Kuwait Kuwait 345 +105% 50
Liechtenstein Liechtenstein 667 -17.6% 34
Sri Lanka Sri Lanka 27 -15.6% 88
Lithuania Lithuania 212 -57.9% 60
Latvia Latvia 43 -39.4% 82
Macao SAR China Macao SAR China 235 +35.8% 59
Morocco Morocco 1,178 +12.7% 25
Monaco Monaco 615 -14.9% 35
Moldova Moldova 478 -19.4% 41
Mexico Mexico 4,128 +46.5% 11
North Macedonia North Macedonia 555 -11.2% 37
Mongolia Mongolia 358 -10.5% 47
Mozambique Mozambique 30 -25% 86
Mauritius Mauritius 3 +50% 96
Malaysia Malaysia 1,271 +12.9% 23
Norway Norway 3,952 +39.4% 12
New Zealand New Zealand 1,111 +9.46% 26
Oman Oman 545 +15.5% 39
Pakistan Pakistan 109 +11.2% 69
Panama Panama 80 +90.5% 73
Peru Peru 292 +59.6% 55
Philippines Philippines 690 +9.87% 31
Poland Poland 266 +88.7% 58
Portugal Portugal 121 +175% 66
Paraguay Paraguay 71 -45.4% 76
Romania Romania 303 -17.9% 53
Russia Russia 6,414 +11.1% 9
Rwanda Rwanda 46 -43.2% 81
Saudi Arabia Saudi Arabia 547 +33.1% 38
Singapore Singapore 3,911 +23.3% 14
El Salvador El Salvador 24 -4% 89
San Marino San Marino 86 -36.8% 71
Serbia Serbia 758 -16% 30
Slovakia Slovakia 146 +65.9% 65
Slovenia Slovenia 350 -40% 48
Sweden Sweden 29 +190% 87
Seychelles Seychelles 1 -87.5% 97
Syria Syria 62 -22.5% 78
Thailand Thailand 1,364 -13.3% 21
Trinidad & Tobago Trinidad & Tobago 1 -75% 97
Turkey Turkey 6,571 +17.8% 8
Ukraine Ukraine 2,596 +8.57% 17
United States United States 37,564 +29.3% 2
Uzbekistan Uzbekistan 42 +35.5% 83
Vietnam Vietnam 2,203 +5% 18
Yemen Yemen 3 -50% 96
South Africa South Africa 833 +12.9% 29

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'IP.IDS.NRCT'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'IP.IDS.NRCT'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))