Individuals using the Internet (% of population)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 17.7 +2.91% 145
Angola Angola 44.8 +6.41% 116
Albania Albania 83.1 +0.605% 61
Andorra Andorra 95.4 +0.952% 18
United Arab Emirates United Arab Emirates 100 0% 1
Argentina Argentina 89.2 +0.905% 39
Armenia Armenia 80 +3.9% 70
Antigua & Barbuda Antigua & Barbuda 77.6 +0.518% 77
Australia Australia 97.1 +0.103% 11
Austria Austria 95.3 +1.82% 19
Azerbaijan Azerbaijan 89 +1.14% 40
Burundi Burundi 11.1 +0.909% 149
Belgium Belgium 94.6 +0.638% 21
Benin Benin 32.2 +7.33% 132
Burkina Faso Burkina Faso 17 +16.4% 146
Bangladesh Bangladesh 44.5 +6.97% 117
Bulgaria Bulgaria 80.4 +1.64% 68
Bahrain Bahrain 100 0% 1
Bahamas Bahamas 94.8 +0.106% 20
Bosnia & Herzegovina Bosnia & Herzegovina 83.4 +5.84% 59
Belarus Belarus 91.5 +2.23% 32
Belize Belize 72.4 +0.836% 88
Bolivia Bolivia 70.2 +4.15% 91
Brazil Brazil 84.2 +4.6% 56
Barbados Barbados 80 +0.756% 70
Brunei Brunei 99 0% 6
Bhutan Bhutan 88.4 +2.43% 42
Botswana Botswana 81.4 +1.24% 66
Canada Canada 94 0% 24
Switzerland Switzerland 97.3 +0.829% 10
Chile Chile 94.5 +1.07% 22
China China 77.5 +2.51% 78
Côte d’Ivoire Côte d’Ivoire 40.7 +5.99% 120
Cameroon Cameroon 41.9 +0.239% 119
Congo - Kinshasa Congo - Kinshasa 30.5 +3.39% 133
Congo - Brazzaville Congo - Brazzaville 38.4 +2.4% 122
Colombia Colombia 77.3 +6.18% 79
Comoros Comoros 35.7 +8.84% 125
Cape Verde Cape Verde 73.5 +0.962% 86
Costa Rica Costa Rica 85.4 +3.39% 52
Cuba Cuba 71.3 +4.39% 90
Cyprus Cyprus 91.2 +1.79% 33
Czechia Czechia 86 +1.78% 50
Germany Germany 92.5 +0.983% 29
Djibouti Djibouti 65 +2.69% 97
Dominica Dominica 83.8 +0.6% 57
Denmark Denmark 98.8 +0.919% 7
Dominican Republic Dominican Republic 84.6 +3.8% 55
Algeria Algeria 76.9 +2.81% 80
Ecuador Ecuador 72.7 +4.3% 87
Egypt Egypt 72.7 +0.693% 87
Eritrea Eritrea 20 +6.95% 142
Spain Spain 95.4 +0.952% 18
Estonia Estonia 93.2 +1.86% 26
Finland Finland 93.5 +0.538% 25
Fiji Fiji 79.3 +1.41% 73
France France 86.8 +1.76% 47
Gabon Gabon 71.9 +1.7% 89
United Kingdom United Kingdom 96.3 0% 14
Georgia Georgia 81.9 +4.07% 64
Ghana Ghana 69.9 +0.72% 93
Guinea Guinea 26.5 +7.29% 136
Gambia Gambia 45.9 +4.32% 114
Guinea-Bissau Guinea-Bissau 32.5 +17.8% 131
Equatorial Guinea Equatorial Guinea 60.4 +1.85% 103
Greece Greece 85 +2.16% 53
Grenada Grenada 74.1 -0.269% 85
Guatemala Guatemala 56.1 +1.26% 110
Guyana Guyana 81.7 +4.21% 65
Hong Kong SAR China Hong Kong SAR China 96 +0.418% 16
Honduras Honduras 58.3 +3.37% 105
Croatia Croatia 83.2 +1.34% 60
Hungary Hungary 91.5 +2.69% 32
Indonesia Indonesia 69.2 +4.06% 94
Ireland Ireland 96.5 -0.104% 13
Iran Iran 79.6 +0.632% 71
Iraq Iraq 81.7 +3.81% 65
Iceland Iceland 99.8 0% 2
Israel Israel 87 -5.33% 46
Italy Italy 87 +2.23% 46
Jamaica Jamaica 83.4 +1.21% 59
Jordan Jordan 92.5 +2.21% 29
Japan Japan 87 +2.47% 46
Kazakhstan Kazakhstan 92.9 +0.65% 28
Kenya Kenya 35 +54.2% 127
Kyrgyzstan Kyrgyzstan 88.5 +7.14% 41
Cambodia Cambodia 60.7 +1.68% 101
Kiribati Kiribati 88 +122% 43
St. Kitts & Nevis St. Kitts & Nevis 76.4 +1.06% 81
South Korea South Korea 97.4 +0.206% 9
Kuwait Kuwait 99.7 0% 3
Laos Laos 63.6 +1.44% 99
Lebanon Lebanon 83.5 +0.845% 58
Liberia Liberia 23.5 +7.31% 138
Libya Libya 88.5 -0.113% 41
St. Lucia St. Lucia 70.1 +7.19% 92
Liechtenstein Liechtenstein 97.3 +0.829% 10
Sri Lanka Sri Lanka 51.2 +6% 112
Lesotho Lesotho 48 +3.23% 113
Lithuania Lithuania 88.5 +0.912% 41
Luxembourg Luxembourg 99.3 +1.12% 4
Latvia Latvia 92.2 +1.32% 30
Macao SAR China Macao SAR China 89.2 +1.36% 39
Morocco Morocco 91 +1.22% 34
Monaco Monaco 99.1 0% 5
Moldova Moldova 80.2 +4.56% 69
Madagascar Madagascar 20.4 +9.68% 141
Maldives Maldives 84.7 +0.954% 54
Mexico Mexico 81.2 +3.31% 67
Marshall Islands Marshall Islands 65.7 +1.39% 96
North Macedonia North Macedonia 87.2 +2.59% 45
Mali Mali 35.1 +2.03% 126
Malta Malta 92.1 +0.656% 31
Myanmar (Burma) Myanmar (Burma) 58.5 +0.862% 104
Montenegro Montenegro 89.8 +1.81% 37
Mongolia Mongolia 83 +0.973% 62
Mozambique Mozambique 19.8 +5.32% 143
Mauritania Mauritania 37.4 +9.04% 123
Mauritius Mauritius 79.5 +5.3% 72
Malawi Malawi 18 +5.88% 144
Malaysia Malaysia 97.7 +0.308% 8
Namibia Namibia 64.4 +5.4% 98
Niger Niger 23.2 -0.429% 139
Nigeria Nigeria 39.2 +3.98% 121
Nicaragua Nicaragua 58.2 +18.5% 106
Netherlands Netherlands 97 +4.86% 12
Norway Norway 99 0% 6
Nepal Nepal 55.8 +3.53% 111
New Zealand New Zealand 96.2 0% 15
Oman Oman 95.3 +0.105% 19
Pakistan Pakistan 27.4 +13.2% 135
Panama Panama 78 +0.386% 76
Peru Peru 79.5 +6.43% 72
Philippines Philippines 83.8 +11.4% 57
Papua New Guinea Papua New Guinea 24.1 +1.69% 137
Poland Poland 86.4 -0.575% 49
Portugal Portugal 85.8 +1.54% 51
Paraguay Paraguay 78.1 +2.36% 75
Palestinian Territories Palestinian Territories 86.6 -2.26% 48
Qatar Qatar 99.7 0% 3
Romania Romania 89.2 +4.33% 39
Russia Russia 92.2 +1.99% 30
Rwanda Rwanda 34.2 +9.62% 128
Saudi Arabia Saudi Arabia 100 0% 1
Senegal Senegal 60.6 +2.36% 102
Singapore Singapore 94.3 -1.77% 23
Solomon Islands Solomon Islands 42.5 +0.95% 118
Sierra Leone Sierra Leone 20.6 +7.29% 140
El Salvador El Salvador 67.7 +3.36% 95
San Marino San Marino 87 +2.23% 46
Serbia Serbia 85.4 +2.28% 52
São Tomé & Príncipe São Tomé & Príncipe 61.5 -0.162% 100
Suriname Suriname 78.4 +1.03% 74
Slovakia Slovakia 87.2 -2.13% 45
Slovenia Slovenia 90.4 +1.69% 35
Sweden Sweden 95.7 +0.737% 17
Eswatini Eswatini 57.6 +0.174% 108
Seychelles Seychelles 87.4 +0.46% 44
Chad Chad 13.2 +5.6% 148
Togo Togo 37 +4.23% 124
Thailand Thailand 89.5 +1.7% 38
Tajikistan Tajikistan 56.8 +6.97% 109
Timor-Leste Timor-Leste 34 -1.45% 129
Tonga Tonga 58.5 +1.39% 104
Trinidad & Tobago Trinidad & Tobago 84.7 +0.237% 54
Tunisia Tunisia 72.4 +2.55% 88
Turkey Turkey 86 +3.12% 50
Tuvalu Tuvalu 74.3 +0.951% 84
Tanzania Tanzania 29.1 +31.7% 134
Uganda Uganda 15.3 +37.8% 147
Ukraine Ukraine 82.4 -0.363% 63
Uruguay Uruguay 89.9 0% 36
United States United States 93.1 +0.976% 27
Uzbekistan Uzbekistan 89 +6.08% 40
St. Vincent & Grenadines St. Vincent & Grenadines 76 +6% 82
Vietnam Vietnam 78.1 -0.636% 75
Vanuatu Vanuatu 45.7 0% 115
Samoa Samoa 58.1 +1.4% 107
South Africa South Africa 75.7 +0.265% 83
Zambia Zambia 33 +3.13% 130
Zimbabwe Zimbabwe 38.4 +1.32% 122

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'IT.NET.USER.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'IT.NET.USER.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))