Incidence of HIV, ages 15-49 (per 1,000 uninfected population ages 15-49)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 0.06 +20% 60
Angola Angola 0.7 -6.67% 22
Albania Albania 0.04 0% 62
Argentina Argentina 0.16 -5.88% 50
Armenia Armenia 0.37 +2.78% 38
Azerbaijan Azerbaijan 0.09 0% 57
Burundi Burundi 0.14 -6.67% 52
Belgium Belgium 0.08 0% 58
Benin Benin 0.13 -18.8% 53
Burkina Faso Burkina Faso 0.09 -18.2% 57
Bangladesh Bangladesh 0.01 0% 65
Bulgaria Bulgaria 0.07 0% 59
Bahamas Bahamas 0.22 -12% 45
Belarus Belarus 0.2 -4.76% 46
Belize Belize 0.56 -5.08% 27
Bolivia Bolivia 0.28 -3.45% 41
Brazil Brazil 0.39 0% 36
Barbados Barbados 0.41 -4.65% 34
Bhutan Bhutan 0.12 0% 54
Botswana Botswana 3.32 -12.4% 8
Central African Republic Central African Republic 2.65 -9.86% 10
Chile Chile 0.45 0% 32
Côte d’Ivoire Côte d’Ivoire 0.45 -13.5% 32
Cameroon Cameroon 0.46 -24.6% 31
Congo - Kinshasa Congo - Kinshasa 0.15 -21.1% 51
Congo - Brazzaville Congo - Brazzaville 4.76 +5.08% 5
Colombia Colombia 0.29 -12.1% 40
Cape Verde Cape Verde 0.55 -5.17% 28
Costa Rica Costa Rica 0.25 0% 43
Cuba Cuba 0.37 0% 38
Czechia Czechia 0.03 0% 63
Dominican Republic Dominican Republic 0.59 -10.6% 26
Algeria Algeria 0.08 0% 58
Ecuador Ecuador 0.18 -5.26% 48
Egypt Egypt 0.08 0% 58
Eritrea Eritrea 0.09 -10% 57
Estonia Estonia 0.19 -5% 47
Ethiopia Ethiopia 0.12 -7.69% 54
Fiji Fiji 0.54 +10.2% 29
France France 0.2 0% 46
Gabon Gabon 1.3 -9.72% 14
Georgia Georgia 0.28 0% 41
Ghana Ghana 0.81 -12.9% 20
Guinea Guinea 0.63 -14.9% 24
Gambia Gambia 0.95 -3.06% 17
Guinea-Bissau Guinea-Bissau 0.84 -11.6% 19
Equatorial Guinea Equatorial Guinea 4.7 -1.47% 6
Greece Greece 0.17 +30.8% 49
Guatemala Guatemala 0.1 -9.09% 56
Guyana Guyana 1.06 +3.92% 15
Honduras Honduras 0.08 0% 58
Croatia Croatia 0.04 0% 62
Haiti Haiti 0.81 -1.22% 20
Indonesia Indonesia 0.15 -6.25% 51
Iran Iran 0.05 0% 61
Iraq Iraq 0.03 +50% 63
Iceland Iceland 0.08 0% 58
Italy Italy 0.08 0% 58
Jamaica Jamaica 0.76 -9.52% 21
Jordan Jordan 0.01 0% 65
Kenya Kenya 0.68 -19% 23
Kyrgyzstan Kyrgyzstan 0.2 0% 46
Cambodia Cambodia 0.15 0% 51
Laos Laos 0.23 0% 44
Liberia Liberia 0.37 -15.9% 38
Sri Lanka Sri Lanka 0.01 0% 65
Lesotho Lesotho 5.04 -20.5% 4
Lithuania Lithuania 0.12 -7.69% 54
Luxembourg Luxembourg 0.12 -7.69% 54
Latvia Latvia 0.4 -2.44% 35
Morocco Morocco 0.03 -25% 63
Moldova Moldova 0.68 +1.49% 23
Madagascar Madagascar 0.5 -1.96% 30
Maldives Maldives 0.01 0% 65
Mexico Mexico 0.28 0% 41
North Macedonia North Macedonia 0.05 0% 61
Mali Mali 0.42 -2.33% 33
Malta Malta 0.17 0% 49
Myanmar (Burma) Myanmar (Burma) 0.35 +2.94% 39
Montenegro Montenegro 0.05 -16.7% 61
Mongolia Mongolia 0.02 0% 64
Mozambique Mozambique 5.54 -20.4% 2
Mauritania Mauritania 0.19 0% 47
Malawi Malawi 1.3 -20.2% 14
Malaysia Malaysia 0.15 -6.25% 51
Namibia Namibia 4.2 -12.1% 7
Niger Niger 0.08 0% 58
Nicaragua Nicaragua 0.13 -7.14% 53
Nepal Nepal 0.02 -33.3% 64
Oman Oman 0.05 0% 61
Panama Panama 0.6 -1.64% 25
Peru Peru 0.29 -6.45% 40
Philippines Philippines 0.39 +11.4% 36
Papua New Guinea Papua New Guinea 0.99 +4.21% 16
Qatar Qatar 0.05 0% 61
Romania Romania 0.05 -16.7% 61
Rwanda Rwanda 0.38 -13.6% 37
Saudi Arabia Saudi Arabia 0.06 +20% 60
Sudan Sudan 0.14 +7.69% 52
Senegal Senegal 0.13 0% 53
Sierra Leone Sierra Leone 0.54 -25% 29
El Salvador El Salvador 0.23 0% 44
Serbia Serbia 0.05 0% 61
São Tomé & Príncipe São Tomé & Príncipe 0.07 -22.2% 59
Suriname Suriname 1.31 +9.17% 13
Slovakia Slovakia 0.04 0% 62
Eswatini Eswatini 7.68 -20.3% 1
Syria Syria 0.01 0% 65
Chad Chad 0.28 -15.2% 41
Togo Togo 0.38 -9.52% 37
Thailand Thailand 0.27 0% 42
Tajikistan Tajikistan 0.17 -5.56% 49
Timor-Leste Timor-Leste 0.12 -7.69% 54
Tanzania Tanzania 0.88 -21.4% 18
Uganda Uganda 2.19 -6.81% 11
Uruguay Uruguay 0.45 0% 32
Vietnam Vietnam 0.11 -8.33% 55
Yemen Yemen 0.04 0% 62
South Africa South Africa 5.21 -8.27% 3
Zambia Zambia 3.25 -16.5% 9
Zimbabwe Zimbabwe 1.68 -9.19% 12

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.HIV.INCD.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.HIV.INCD.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))