Import volume index (2015 = 100)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 88.8 +9.09% 150
Afghanistan Afghanistan 64.4 +12.2% 177
Angola Angola 69.5 -4.79% 171
Albania Albania 149 +172% 28
Andorra Andorra 124 +9.9% 67
United Arab Emirates United Arab Emirates 144 +12.4% 35
Argentina Argentina 109 -4.39% 108
Armenia Armenia 271 +47.9% 3
American Samoa American Samoa 88.6 +9.52% 151
Antigua & Barbuda Antigua & Barbuda 169 +14.2% 15
Australia Australia 126 -2.56% 62
Austria Austria 93.6 -8.68% 142
Azerbaijan Azerbaijan 151 +18.8% 24
Burundi Burundi 98.4 -4.28% 133
Belgium Belgium 103 -5.77% 117
Benin Benin 152 +6.77% 22
Burkina Faso Burkina Faso 130 +14.6% 50
Bangladesh Bangladesh 123 -16.3% 69
Bulgaria Bulgaria 118 -6.64% 82
Bahrain Bahrain 112 +2.1% 97
Bahamas Bahamas 89.4 +22.5% 148
Bosnia & Herzegovina Bosnia & Herzegovina 133 +5.55% 47
Belarus Belarus 139 +36% 39
Belize Belize 101 +0.595% 123
Bermuda Bermuda 102 -1.54% 119
Bolivia Bolivia 68.3 -10.7% 172
Brazil Brazil 123 -5.25% 70
Barbados Barbados 99.5 +1.53% 129
Brunei Brunei 162 -8.25% 18
Bhutan Bhutan 96.5 -6.31% 135
Botswana Botswana 69.7 -18.4% 170
Central African Republic Central African Republic 122 -1.13% 71
Canada Canada 114 -1.38% 92
Switzerland Switzerland 96.4 -2.23% 136
Chile Chile 117 -12.9% 85
China China 130 +2.86% 53
Côte d’Ivoire Côte d’Ivoire 135 +11.2% 44
Cameroon Cameroon 109 +8.64% 106
Congo - Kinshasa Congo - Kinshasa 112 +4.4% 98
Congo - Brazzaville Congo - Brazzaville 37.1 +33% 185
Colombia Colombia 110 -14.5% 105
Comoros Comoros 122 +1.24% 73
Cape Verde Cape Verde 127 +12.3% 58
Costa Rica Costa Rica 118 +6.99% 83
Cuba Cuba 62.9 +7.16% 178
Cayman Islands Cayman Islands 161 +6.57% 19
Cyprus Cyprus 122 +12.7% 72
Czechia Czechia 110 -5.59% 104
Germany Germany 101 -5.53% 126
Djibouti Djibouti 340 +18.1% 1
Dominica Dominica 81.8 +20.8% 157
Denmark Denmark 105 -1.22% 112
Dominican Republic Dominican Republic 146 -1.56% 32
Algeria Algeria 70.2 +25.8% 168
Ecuador Ecuador 112 -3.63% 98
Egypt Egypt 103 -6.11% 116
Eritrea Eritrea 37.6 -2.08% 184
Spain Spain 96 -7.34% 137
Estonia Estonia 108 -12% 109
Ethiopia Ethiopia 86.3 -1.03% 154
Finland Finland 97.3 -14.9% 134
Fiji Fiji 115 +10.6% 91
France France 89.4 -8.68% 148
Faroe Islands Faroe Islands 151 +4.99% 23
Micronesia (Federated States of) Micronesia (Federated States of) 141 +14.1% 38
Gabon Gabon 81.7 +19.8% 158
United Kingdom United Kingdom 102 -8.36% 120
Georgia Georgia 155 +19% 21
Ghana Ghana 82.2 -0.605% 156
Gibraltar Gibraltar 98.4 +6.84% 133
Guinea Guinea 168 -3% 16
Gambia Gambia 217 +80.4% 7
Guinea-Bissau Guinea-Bissau 141 +0.499% 37
Equatorial Guinea Equatorial Guinea 65.2 -8.04% 175
Greece Greece 127 -1.01% 57
Grenada Grenada 125 +6.37% 64
Greenland Greenland 111 -7.86% 99
Guatemala Guatemala 145 -2.16% 33
Guam Guam 149 +17.7% 27
Guyana Guyana 335 +92.3% 2
Hong Kong SAR China Hong Kong SAR China 95.1 -5.93% 139
Honduras Honduras 113 -9.24% 96
Croatia Croatia 136 +1.34% 42
Haiti Haiti 69.7 -26.6% 170
Hungary Hungary 119 -4.33% 79
Indonesia Indonesia 121 -0.165% 76
India India 124 +8.47% 68
Ireland Ireland 132 -2.23% 49
Iran Iran 116 +17.4% 87
Iraq Iraq 111 +19.1% 101
Iceland Iceland 133 -0.671% 46
Israel Israel 125 -11.7% 66
Italy Italy 102 -3.42% 122
Jamaica Jamaica 120 +9.89% 78
Jordan Jordan 126 -1.02% 60
Japan Japan 103 -2.19% 118
Kazakhstan Kazakhstan 149 +20.7% 27
Kenya Kenya 91.3 -5.19% 146
Kyrgyzstan Kyrgyzstan 236 +28.7% 5
Cambodia Cambodia 138 -16.9% 40
Kiribati Kiribati 217 +51% 6
St. Kitts & Nevis St. Kitts & Nevis 90.1 +1.58% 147
South Korea South Korea 125 -3.17% 64
Kuwait Kuwait 101 +8.39% 126
Laos Laos 101 +8.28% 127
Lebanon Lebanon 70 -1.55% 169
Liberia Liberia 94.4 +27.2% 140
Libya Libya 71 -23.3% 166
St. Lucia St. Lucia 116 +20.3% 88
Sri Lanka Sri Lanka 87.8 -0.227% 153
Lesotho Lesotho 64.6 -1.82% 176
Lithuania Lithuania 121 -4.8% 75
Luxembourg Luxembourg 72.7 -13.8% 164
Latvia Latvia 128 -2.96% 55
Macao SAR China Macao SAR China 134 +1.06% 45
Morocco Morocco 130 -2.11% 52
Moldova Moldova 170 -2.91% 13
Madagascar Madagascar 136 -9.95% 43
Maldives Maldives 142 +3.35% 36
Mexico Mexico 120 +1.78% 77
Marshall Islands Marshall Islands 54.8 +5.79% 181
North Macedonia North Macedonia 144 +2.79% 34
Mali Mali 126 -0.709% 59
Malta Malta 101 -3.27% 128
Myanmar (Burma) Myanmar (Burma) 76.4 +4.51% 161
Mongolia Mongolia 179 +11.1% 9
Northern Mariana Islands Northern Mariana Islands 89 +11.8% 149
Mozambique Mozambique 88.3 -24.4% 152
Mauritania Mauritania 108 +9.63% 109
Mauritius Mauritius 95.3 +2.69% 138
Malawi Malawi 107 +107% 111
Malaysia Malaysia 147 -5.41% 31
Namibia Namibia 67.3 -4.27% 173
New Caledonia New Caledonia 93.7 +2.63% 141
Niger Niger 104 -6.25% 115
Nigeria Nigeria 83.9 -11.3% 155
Nicaragua Nicaragua 147 +6.67% 30
Netherlands Netherlands 117 -6.16% 86
Norway Norway 102 -6.43% 121
Nepal Nepal 132 -4.69% 48
Nauru Nauru 70.5 -11.2% 167
New Zealand New Zealand 122 -3.7% 72
Oman Oman 98.6 -1.2% 132
Pakistan Pakistan 170 -1.79% 14
Panama Panama 110 +13.9% 103
Peru Peru 129 -10.1% 54
Philippines Philippines 148 +0.611% 29
Palau Palau 118 +14.4% 84
Papua New Guinea Papua New Guinea 167 -4.35% 17
Poland Poland 128 -5.49% 56
North Korea North Korea 67.2 +87.2% 174
Portugal Portugal 119 -0.75% 80
Paraguay Paraguay 114 -3.47% 93
Palestinian Territories Palestinian Territories 101 +1.1% 125
French Polynesia French Polynesia 124 +5.97% 68
Qatar Qatar 79.9 -6.77% 159
Romania Romania 126 -3.31% 61
Russia Russia 138 +12.4% 40
Rwanda Rwanda 125 +12.8% 63
Saudi Arabia Saudi Arabia 137 +15.8% 41
Senegal Senegal 150 -0.265% 25
Singapore Singapore 114 -9.61% 95
Solomon Islands Solomon Islands 171 +46% 12
Sierra Leone Sierra Leone 102 -5.21% 121
El Salvador El Salvador 119 -2.71% 81
Somalia Somalia 149 -5.04% 26
Serbia Serbia 173 +4.02% 11
São Tomé & Príncipe São Tomé & Príncipe 112 -4.69% 97
Suriname Suriname 62.7 -4.57% 179
Slovakia Slovakia 99.4 -1.78% 130
Slovenia Slovenia 158 +5% 20
Sweden Sweden 99.3 -6.05% 131
Eswatini Eswatini 92 -0.648% 144
Seychelles Seychelles 125 +8.33% 65
Syria Syria 73.7 -4.16% 163
Turks & Caicos Islands Turks & Caicos Islands 77 -5.06% 160
Chad Chad 50.1 +7.05% 182
Togo Togo 104 +22.7% 114
Thailand Thailand 111 -4.3% 100
Tajikistan Tajikistan 115 +21.6% 89
Turkmenistan Turkmenistan 46.7 +13.3% 183
Timor-Leste Timor-Leste 130 -1.44% 51
Tonga Tonga 108 +4.97% 110
Trinidad & Tobago Trinidad & Tobago 71.7 +45.7% 165
Tunisia Tunisia 91.4 -3.48% 145
Turkey Turkey 130 +12.8% 52
Tanzania Tanzania 98.6 +1.96% 132
Uganda Uganda 175 +31.8% 10
Ukraine Ukraine 74.6 +6.57% 162
Uruguay Uruguay 125 +7.28% 63
United States United States 121 -2.88% 74
Uzbekistan Uzbekistan 245 +30% 4
St. Vincent & Grenadines St. Vincent & Grenadines 115 +8.26% 90
British Virgin Islands British Virgin Islands 110 -8.08% 102
Vietnam Vietnam 181 -4.78% 8
Vanuatu Vanuatu 104 +44.1% 113
Samoa Samoa 101 +10.6% 124
Yemen Yemen 60.3 -1.15% 180
South Africa South Africa 114 +4.78% 94
Zambia Zambia 93.2 +15.3% 143
Zimbabwe Zimbabwe 109 +10.4% 107

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TM.QTY.MRCH.XD.WD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TM.QTY.MRCH.XD.WD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))