Import unit value index (2015 = 100)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 122 -9.06% 122
Afghanistan Afghanistan 142 -6.82% 28
Angola Angola 127 -3.64% 98
Albania Albania 160 +40.5% 6
Andorra Andorra 124 -2.45% 115
United Arab Emirates United Arab Emirates 125 -0.319% 108
Argentina Argentina 113 -5.38% 145
Armenia Armenia 140 -5.01% 33
American Samoa American Samoa 106 -9.99% 152
Antigua & Barbuda Antigua & Barbuda 124 -8.16% 113
Australia Australia 110 -4.69% 148
Austria Austria 154 +5.55% 12
Azerbaijan Azerbaijan 127 -1.93% 96
Burundi Burundi 137 -3.79% 48
Belgium Belgium 142 -5.21% 29
Benin Benin 134 -0.739% 56
Burkina Faso Burkina Faso 148 -6.16% 20
Bangladesh Bangladesh 131 -9.38% 75
Bulgaria Bulgaria 155 -1.08% 10
Bahrain Bahrain 110 -4.09% 147
Bahamas Bahamas 145 -7.15% 23
Bosnia & Herzegovina Bosnia & Herzegovina 129 -5.23% 85
Belarus Belarus 104 -17% 156
Belize Belize 131 -2.97% 73
Bermuda Bermuda 115 +0.435% 141
Bolivia Bolivia 172 -1.37% 3
Brazil Brazil 114 -8.72% 142
Barbados Barbados 131 -3.04% 74
Brunei Brunei 146 -11.5% 22
Bhutan Bhutan 131 -7.67% 70
Botswana Botswana 129 -1.6% 84
Central African Republic Central African Republic 119 -1.33% 130
Canada Canada 116 -0.94% 140
Switzerland Switzerland 149 +4.26% 18
Chile Chile 117 -6.42% 139
China China 118 -8.2% 136
Côte d’Ivoire Côte d’Ivoire 135 -5.01% 54
Cameroon Cameroon 124 -5.15% 115
Congo - Kinshasa Congo - Kinshasa 129 -2.64% 82
Congo - Brazzaville Congo - Brazzaville 125 -1.96% 109
Colombia Colombia 106 -5.1% 153
Comoros Comoros 137 +0.073% 46
Cape Verde Cape Verde 126 -7.34% 101
Costa Rica Costa Rica 125 -0.948% 106
Cuba Cuba 135 -5.45% 52
Cayman Islands Cayman Islands 132 -0.0756% 67
Cyprus Cyprus 162 +0.936% 5
Czechia Czechia 149 +3.54% 18
Germany Germany 139 -1.2% 37
Djibouti Djibouti 134 -6.96% 59
Dominica Dominica 176 -5.84% 2
Denmark Denmark 140 -0.639% 34
Dominican Republic Dominican Republic 117 -5.25% 137
Algeria Algeria 120 -10.5% 127
Ecuador Ecuador 129 -2.94% 85
Egypt Egypt 126 -7.42% 103
Eritrea Eritrea 127 -1.09% 93
Spain Spain 157 +2.68% 8
Estonia Estonia 146 -2.8% 22
Ethiopia Ethiopia 127 -4.22% 95
Finland Finland 141 +0.142% 30
Fiji Fiji 130 -5.78% 76
France France 154 +4.55% 12
Faroe Islands Faroe Islands 125 -2.65% 110
Micronesia (Federated States of) Micronesia (Federated States of) 138 -4.69% 42
Gabon Gabon 121 -1.15% 126
United Kingdom United Kingdom 123 +4.85% 116
Georgia Georgia 137 -3.99% 47
Ghana Ghana 127 -3.51% 100
Gibraltar Gibraltar 159 -15.5% 7
Guinea Guinea 128 -0.313% 92
Gambia Gambia 135 -2.04% 53
Guinea-Bissau Guinea-Bissau 133 -0.524% 64
Equatorial Guinea Equatorial Guinea 121 +1.42% 124
Greece Greece 151 -8.94% 16
Grenada Grenada 132 -3.15% 66
Greenland Greenland 127 -3.79% 99
Guatemala Guatemala 118 -3.43% 132
Guam Guam 126 -11.2% 105
Guyana Guyana 134 -3.74% 58
Hong Kong SAR China Hong Kong SAR China 123 +4.15% 118
Honduras Honduras 138 +4.71% 43
Croatia Croatia 155 -4.39% 11
Haiti Haiti 131 -0.983% 72
Hungary Hungary 142 -1.32% 29
Indonesia Indonesia 131 -5.57% 74
India India 137 -14% 45
Ireland Ireland 149 +4.57% 19
Iran Iran 127 -2.6% 94
Iraq Iraq 125 -1.34% 109
Iceland Iceland 134 -0.667% 57
Israel Israel 118 -3.59% 133
Italy Italy 153 -4.55% 13
Jamaica Jamaica 135 -7.14% 52
Jordan Jordan 99.7 -4.96% 159
Japan Japan 118 -10.5% 134
Kazakhstan Kazakhstan 133 -1.55% 60
Kenya Kenya 129 -7.31% 81
Kyrgyzstan Kyrgyzstan 131 -2.74% 71
Cambodia Cambodia 133 -1.7% 63
Kiribati Kiribati 126 +1.04% 104
St. Kitts & Nevis St. Kitts & Nevis 124 +0.323% 112
South Korea South Korea 118 -9.26% 135
Kuwait Kuwait 120 +1.01% 127
Laos Laos 131 -3.81% 71
Lebanon Lebanon 137 -5.39% 49
Liberia Liberia 127 -2.31% 96
Libya Libya 133 -4.52% 62
St. Lucia St. Lucia 141 -10.8% 31
Sri Lanka Sri Lanka 101 -7.92% 158
Lesotho Lesotho 134 -5.31% 59
Lithuania Lithuania 142 -7.67% 27
Luxembourg Luxembourg 151 +9.81% 15
Latvia Latvia 145 -4.6% 24
Macao SAR China Macao SAR China 124 +0.0809% 114
Morocco Morocco 139 -2.39% 39
Moldova Moldova 128 -3.11% 89
Madagascar Madagascar 125 -4.2% 106
Maldives Maldives 130 -3.77% 78
Mexico Mexico 128 -2.52% 92
Marshall Islands Marshall Islands 119 -2.38% 130
North Macedonia North Macedonia 130 -8.12% 77
Mali Mali 136 -8.29% 51
Malta Malta 139 +1.99% 40
Myanmar (Burma) Myanmar (Burma) 130 -8.89% 78
Mongolia Mongolia 136 -4.35% 50
Northern Mariana Islands Northern Mariana Islands 132 -9.47% 68
Mozambique Mozambique 139 -9.07% 38
Mauritania Mauritania 131 -6.95% 70
Mauritius Mauritius 137 -7.6% 44
Malawi Malawi 129 -4.93% 83
Malaysia Malaysia 103 -4.37% 157
Namibia Namibia 140 -2.86% 36
New Caledonia New Caledonia 128 -8.17% 87
Niger Niger 133 -0.374% 61
Nigeria Nigeria 132 -7.59% 69
Nicaragua Nicaragua 105 -9% 154
Netherlands Netherlands 140 0% 32
Norway Norway 123 -3.54% 120
Nepal Nepal 137 -7% 48
Nauru Nauru 117 +0.603% 138
New Zealand New Zealand 112 -4.36% 146
Oman Oman 127 -4.5% 95
Pakistan Pakistan 67.1 -27.6% 162
Panama Panama 138 +2.98% 41
Peru Peru 107 -4.54% 151
Philippines Philippines 121 -8.75% 125
Palau Palau 127 -0.857% 94
Papua New Guinea Papua New Guinea 128 -2.81% 87
Poland Poland 148 +2.64% 20
North Korea North Korea 85.1 +1.55% 161
Portugal Portugal 142 -0.698% 26
Paraguay Paraguay 137 +5.22% 47
Palestinian Territories Palestinian Territories 163 -6.71% 4
French Polynesia French Polynesia 123 -1.29% 120
Qatar Qatar 121 +0.248% 123
Romania Romania 150 +2.94% 17
Russia Russia 114 -2.4% 143
Rwanda Rwanda 130 -1.59% 79
Saudi Arabia Saudi Arabia 86.8 -5.75% 160
Senegal Senegal 133 -6.62% 65
Singapore Singapore 125 -1.49% 107
Solomon Islands Solomon Islands 131 -3.25% 72
Sierra Leone Sierra Leone 124 +3.43% 113
El Salvador El Salvador 128 -6.09% 88
Somalia Somalia 130 +2.28% 77
Serbia Serbia 123 -8.77% 119
São Tomé & Príncipe São Tomé & Príncipe 129 -1.75% 80
Suriname Suriname 134 -1.25% 55
Slovakia Slovakia 157 +2.82% 9
Slovenia Slovenia 152 -2.31% 14
Sweden Sweden 140 +1.08% 32
Eswatini Eswatini 145 -4.86% 25
Seychelles Seychelles 120 -1.16% 129
Syria Syria 131 -3.9% 74
Turks & Caicos Islands Turks & Caicos Islands 130 -1.74% 77
Chad Chad 119 -1.66% 131
Togo Togo 137 -11% 46
Thailand Thailand 129 +0.626% 86
Tajikistan Tajikistan 147 -5.76% 21
Turkmenistan Turkmenistan 123 -0.485% 117
Timor-Leste Timor-Leste 137 -2.07% 48
Tonga Tonga 120 -3.53% 128
Trinidad & Tobago Trinidad & Tobago 126 -2.62% 102
Tunisia Tunisia 138 -0.934% 43
Turkey Turkey 131 -11.8% 73
Tanzania Tanzania 128 -5.7% 92
Uganda Uganda 126 -5.18% 102
Ukraine Ukraine 227 +7.69% 1
Uruguay Uruguay 105 -10.3% 155
United States United States 113 -3.09% 144
Uzbekistan Uzbekistan 128 -3.04% 91
St. Vincent & Grenadines St. Vincent & Grenadines 127 -3.42% 97
British Virgin Islands British Virgin Islands 123 -2.31% 121
Vietnam Vietnam 109 -4.74% 150
Vanuatu Vanuatu 128 -2.52% 90
Samoa Samoa 125 -3.94% 111
Yemen Yemen 128 -3.03% 90
South Africa South Africa 110 -8.35% 149
Zambia Zambia 137 -2.28% 47
Zimbabwe Zimbabwe 140 -3.45% 35

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TM.UVI.MRCH.XD.WD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TM.UVI.MRCH.XD.WD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))