IMF repurchases and charges (TDS, current US$)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 27,956,332 +111% 76
Angola Angola 472,054,596 +241% 13
Albania Albania 138,467,623 +74.7% 35
Argentina Argentina 21,015,156,199 +12.9% 1
Armenia Armenia 128,935,842 +120% 38
Azerbaijan Azerbaijan 26,985,145 +190% 79
Burundi Burundi 17,299,948 +122% 89
Benin Benin 38,052,416 +152% 70
Burkina Faso Burkina Faso 27,800,249 +5.35% 77
Bangladesh Bangladesh 351,267,125 +80.7% 16
Bosnia & Herzegovina Bosnia & Herzegovina 158,871,903 +326% 30
Belarus Belarus 52,125,299 +190% 60
Belize Belize 2,218,524 +190% 110
Bolivia Bolivia 20,112,124 +190% 87
Brazil Brazil 687,149,997 +190% 10
Bhutan Bhutan 1,303,366 +190% 119
Botswana Botswana 12,570,744 +190% 97
Central African Republic Central African Republic 31,499,567 +145% 71
China China 1,846,952,244 +190% 5
Côte d’Ivoire Côte d’Ivoire 434,387,721 +112% 14
Cameroon Cameroon 90,830,065 +715% 46
Congo - Kinshasa Congo - Kinshasa 78,179,277 +190% 49
Congo - Brazzaville Congo - Brazzaville 11,985,097 +190% 98
Colombia Colombia 367,036,919 +170% 15
Comoros Comoros 8,447,199 +166% 101
Cape Verde Cape Verde 1,626,206 +189% 115
Costa Rica Costa Rica 161,450,620 +486% 29
Djibouti Djibouti 2,327,916 +41.9% 109
Dominica Dominica 2,602,730 +15.6% 108
Dominican Republic Dominican Republic 221,394,781 +864% 24
Algeria Algeria 156,946,870 +190% 31
Ecuador Ecuador 774,236,720 +219% 9
Egypt Egypt 3,916,917,470 +110% 2
Eritrea Eritrea 1,550,165 +190% 116
Ethiopia Ethiopia 144,805,690 +776% 32
Fiji Fiji 8,233,751 +190% 102
Gabon Gabon 190,631,609 +203% 26
Georgia Georgia 78,013,855 +115% 50
Ghana Ghana 178,184,932 +27.8% 27
Guinea Guinea 61,522,341 +77.3% 57
Gambia Gambia 9,953,340 +132% 100
Guinea-Bissau Guinea-Bissau 7,171,848 +110% 105
Grenada Grenada 5,117,412 +29.1% 106
Guatemala Guatemala 31,204,742 +190% 72
Guyana Guyana 13,331,152 +190% 93
Honduras Honduras 109,318,651 +740% 42
Haiti Haiti 23,959,120 +43% 83
Indonesia Indonesia 328,300,137 +190% 18
India India 844,139,557 +190% 8
Iran Iran 247,151,266 +190% 23
Iraq Iraq 139,221,361 -59.4% 34
Jamaica Jamaica 302,830,472 +102% 19
Jordan Jordan 267,065,951 +279% 22
Kazakhstan Kazakhstan 74,167,792 +190% 52
Kenya Kenya 118,119,372 +26.3% 39
Kyrgyzstan Kyrgyzstan 90,855,412 +214% 45
Cambodia Cambodia 12,837,554 +190% 94
Laos Laos 7,757,495 +190% 103
Lebanon Lebanon 40,833,908 +190% 67
Liberia Liberia 55,399,056 +78.1% 59
St. Lucia St. Lucia 1,788,960 +189% 113
Sri Lanka Sri Lanka 277,849,069 +57.1% 21
Lesotho Lesotho 12,658,792 +44% 96
Morocco Morocco 164,122,720 +172% 28
Moldova Moldova 89,299,910 +111% 47
Madagascar Madagascar 67,532,232 +152% 56
Maldives Maldives 1,428,767 +189% 118
Mexico Mexico 581,211,827 +190% 11
North Macedonia North Macedonia 70,064,257 +927% 55
Mali Mali 49,514,565 +97.5% 62
Myanmar (Burma) Myanmar (Burma) 116,202,344 +449% 40
Montenegro Montenegro 28,103,078 +869% 75
Mongolia Mongolia 79,996,252 +135% 48
Mozambique Mozambique 41,918,490 +34.8% 66
Mauritania Mauritania 18,069,695 +49% 88
Mauritius Mauritius 11,890,379 +190% 99
Malawi Malawi 40,009,466 +21.9% 69
Niger Niger 43,283,222 +74.1% 65
Nigeria Nigeria 1,168,649,660 +808% 6
Nicaragua Nicaragua 24,366,406 +183% 81
Nepal Nepal 20,656,416 +140% 86
Pakistan Pakistan 1,859,755,113 +52.1% 4
Peru Peru 96,359,698 +190% 44
Philippines Philippines 142,629,856 +190% 33
Papua New Guinea Papua New Guinea 21,021,945 +216% 85
Paraguay Paraguay 14,702,555 +190% 92
Rwanda Rwanda 55,461,756 +53.1% 58
Sudan Sudan 40,715,178 +190% 68
Senegal Senegal 134,147,972 +627% 37
Solomon Islands Solomon Islands 7,214,537 +586% 104
Sierra Leone Sierra Leone 75,468,490 +63.4% 51
El Salvador El Salvador 134,909,714 +831% 36
Somalia Somalia 347,076,877 +7,474% 17
Serbia Serbia 101,227,643 +436% 43
São Tomé & Príncipe São Tomé & Príncipe 2,079,783 +98.7% 112
Suriname Suriname 16,883,725 +221% 90
Eswatini Eswatini 24,192,980 +501% 82
Syria Syria 28,596,676 +190% 74
Chad Chad 49,179,719 +88.6% 63
Togo Togo 27,554,784 +289% 78
Thailand Thailand 206,533,474 +190% 25
Tajikistan Tajikistan 12,694,811 +107% 95
Turkmenistan Turkmenistan 15,226,836 +190% 91
Timor-Leste Timor-Leste 1,646,217 +189% 114
Tonga Tonga 1,009,875 +189% 120
Tunisia Tunisia 568,191,508 +189% 12
Turkey Turkey 282,422,189 +190% 20
Tanzania Tanzania 29,167,649 +190% 73
Uganda Uganda 26,478,206 +190% 80
Ukraine Ukraine 3,415,647,200 +41.4% 3
Uzbekistan Uzbekistan 112,479,013 +516% 41
St. Vincent & Grenadines St. Vincent & Grenadines 1,528,820 +71.3% 117
Vietnam Vietnam 72,436,196 +190% 53
Vanuatu Vanuatu 4,260,953 +43.8% 107
Samoa Samoa 2,131,810 +5.5% 111
Kosovo Kosovo 23,039,027 +38.3% 84
Yemen Yemen 48,664,776 +80.4% 64
South Africa South Africa 935,367,168 +504% 7
Zambia Zambia 71,758,499 +190% 54
Zimbabwe Zimbabwe 51,829,140 +190% 61

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'DT.TDS.DIMF.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'DT.TDS.DIMF.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))