ICT service exports (% of service exports, BoP)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 22.3 -50.9% 12
Albania Albania 2.98 -0.982% 82
Argentina Argentina 16.4 +7.96% 24
Armenia Armenia 20.8 +10.1% 14
Antigua & Barbuda Antigua & Barbuda 0.439 -10.7% 106
Australia Australia 3.03 -6.59% 81
Austria Austria 12.6 -0.526% 30
Azerbaijan Azerbaijan 1.37 -37.9% 96
Belgium Belgium 15.7 +11.2% 25
Bangladesh Bangladesh 10.5 +5.68% 40
Bulgaria Bulgaria 26.3 +9.3% 9
Bahrain Bahrain 8.26 -3.85% 54
Bosnia & Herzegovina Bosnia & Herzegovina 12.9 -0.787% 28
Belize Belize 10 -0.221% 44
Brazil Brazil 12.7 -0.0854% 29
Brunei Brunei 3.61 -64.3% 76
Bhutan Bhutan 0.447 -36.6% 105
Canada Canada 12 -9.64% 32
Switzerland Switzerland 11.4 +1.47% 35
Chile Chile 5.66 -3.18% 70
China China 16.9 -3.95% 22
Colombia Colombia 11.2 +2.33% 37
Cape Verde Cape Verde 1.49 -0.903% 94
Costa Rica Costa Rica 14.8 +2.9% 27
Cyprus Cyprus 29.7 -0.0407% 7
Czechia Czechia 17.9 -0.695% 19
Germany Germany 11.4 +3.78% 34
Djibouti Djibouti 6.86 -26.9% 65
Dominica Dominica 1.65 -13.3% 93
Denmark Denmark 7.59 -0.845% 59
Dominican Republic Dominican Republic 0.357 -21.3% 107
Ecuador Ecuador 2.61 +13.4% 85
Spain Spain 10.3 -7.73% 42
Estonia Estonia 25.7 +9.48% 10
Finland Finland 33.1 +11% 6
France France 7.43 -2.13% 62
United Kingdom United Kingdom 9.06 -4.4% 48
Georgia Georgia 10.9 -13.5% 38
Gambia Gambia 0.311 -17.2% 108
Greece Greece 3.18 +13.2% 78
Grenada Grenada 0.664 -5.78% 104
Guatemala Guatemala 12.4 -12.2% 31
Honduras Honduras 2.25 -21.2% 88
Croatia Croatia 7.68 -0.0558% 58
Hungary Hungary 11.3 +11.1% 36
Indonesia Indonesia 9.63 +16.7% 45
India India 47.4 -1.57% 2
Iceland Iceland 7.76 -2.07% 57
Israel Israel 64.8 +4.92% 1
Italy Italy 6.17 -4.16% 68
Jamaica Jamaica 2.43 +0.325% 87
Japan Japan 4.83 -14.3% 72
Kazakhstan Kazakhstan 7.45 +8.55% 61
Cambodia Cambodia 6.33 +11.1% 67
St. Kitts & Nevis St. Kitts & Nevis 0.852 +17.6% 99
South Korea South Korea 10.4 -1.37% 41
Kuwait Kuwait 44.8 -2.15% 4
St. Lucia St. Lucia 0.746 -11.5% 101
Lesotho Lesotho 0.0992 +12.1% 109
Lithuania Lithuania 11.5 +5.95% 33
Luxembourg Luxembourg 3.07 -20.7% 80
Latvia Latvia 17.6 +3.92% 21
Moldova Moldova 26.7 +3.46% 8
Maldives Maldives 0.932 -4.73% 98
Mexico Mexico 3.8 +30.2% 75
North Macedonia North Macedonia 21.7 +3.35% 13
Malta Malta 1.69 +2.54% 92
Montenegro Montenegro 7.51 +6.91% 60
Mozambique Mozambique 0.795 -32.6% 100
Malaysia Malaysia 8.66 -8.35% 52
Namibia Namibia 2.02 +2.87% 90
Nigeria Nigeria 4.04 -5.75% 74
Nicaragua Nicaragua 19.4 +8.08% 18
Netherlands Netherlands 8.96 -1.56% 49
Norway Norway 8.34 +4.42% 53
Nepal Nepal 6.11 -60.7% 69
New Zealand New Zealand 6.39 -12.3% 66
Pakistan Pakistan 44.9 +22.2% 3
Panama Panama 2.94 -1.38% 83
Peru Peru 2.16 -3.27% 89
Philippines Philippines 15.6 +5.92% 26
Poland Poland 16.5 +6.63% 23
Portugal Portugal 8.16 -2.76% 55
Paraguay Paraguay 0.674 +7.53% 103
Palestinian Territories Palestinian Territories 17.7 +44% 20
Qatar Qatar 3.45 -19.8% 77
Romania Romania 25.6 -0.458% 11
Russia Russia 5.66 -20.6% 71
Saudi Arabia Saudi Arabia 3.11 -11% 79
Singapore Singapore 7.79 -4.73% 56
Solomon Islands Solomon Islands 1.92 -29.4% 91
El Salvador El Salvador 6.91 -16.5% 64
Suriname Suriname 10.6 -5.05% 39
Slovakia Slovakia 19.6 +20.9% 16
Slovenia Slovenia 8.87 +6.13% 50
Sweden Sweden 20.5 -2.83% 15
Thailand Thailand 0.71 -13.2% 102
Tajikistan Tajikistan 1.04 -62.9% 97
Timor-Leste Timor-Leste 2.44 +27.1% 86
Tonga Tonga 10.2 -22.7% 43
Trinidad & Tobago Trinidad & Tobago 2.66 -51% 84
Turkey Turkey 4.21 +5.6% 73
Ukraine Ukraine 38.4 -7.46% 5
Uruguay Uruguay 19.5 -0.963% 17
United States United States 7.16 +4.04% 63
Uzbekistan Uzbekistan 9.47 +16.6% 47
St. Vincent & Grenadines St. Vincent & Grenadines 1.47 -16.8% 95
Samoa Samoa 8.8 +30.5% 51
South Africa South Africa 9.58 +2.2% 46

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'BX.GSR.CCIS.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'BX.GSR.CCIS.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))