ICT service exports (BoP, current US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 28,750,304 -16.5% 90
Albania Albania 239,701,718 +11.8% 74
Argentina Argentina 2,810,026,345 +14.7% 39
Armenia Armenia 1,180,569,273 +9.93% 56
Antigua & Barbuda Antigua & Barbuda 5,445,185 +0.8% 99
Australia Australia 2,524,994,963 +1.73% 42
Austria Austria 11,905,971,838 +3.88% 18
Azerbaijan Azerbaijan 111,256,000 -19.8% 81
Belgium Belgium 23,324,634,780 +7.96% 11
Bangladesh Bangladesh 701,758,915 +10.2% 61
Bulgaria Bulgaria 4,366,290,000 +11.2% 34
Bahrain Bahrain 1,406,648,936 +5.4% 52
Bosnia & Herzegovina Bosnia & Herzegovina 484,323,092 +4.38% 69
Belize Belize 115,848,331 +10.2% 79
Brazil Brazil 6,173,496,274 +6.75% 27
Brunei Brunei 14,779,730 -56.9% 94
Bhutan Bhutan 1,288,128 +43.7% 108
Canada Canada 19,147,136,069 -6.91% 15
Switzerland Switzerland 20,447,355,967 +10.4% 13
Chile Chile 677,077,571 +12.6% 63
China China 65,033,312,106 +12.2% 3
Colombia Colombia 1,995,346,147 +13.5% 46
Cape Verde Cape Verde 12,375,087 +15% 95
Costa Rica Costa Rica 2,387,424,580 +12.1% 44
Cyprus Cyprus 9,123,349,271 +8.89% 23
Czechia Czechia 7,619,332,949 +6.78% 25
Germany Germany 53,942,494,153 +8.14% 5
Djibouti Djibouti 80,518,862 -22.4% 85
Dominica Dominica 3,146,523 +1.5% 103
Denmark Denmark 9,647,637,803 +8.59% 21
Dominican Republic Dominican Republic 52,500,000 -9.95% 86
Ecuador Ecuador 98,496,360 +1.72% 82
Spain Spain 22,725,917,758 +3.19% 12
Estonia Estonia 3,470,380,306 +16.7% 38
Finland Finland 13,622,835,651 +24.1% 17
France France 29,722,649,504 +5.84% 8
United Kingdom United Kingdom 58,841,894,239 +5.83% 4
Georgia Georgia 842,273,110 -5.57% 59
Gambia Gambia 1,479,038 +0.411% 107
Greece Greece 1,777,124,296 +18.9% 48
Grenada Grenada 5,237,262 -1.64% 101
Guatemala Guatemala 576,648,200 -4.59% 65
Honduras Honduras 82,617,112 -24.1% 84
Croatia Croatia 1,897,379,560 +1.56% 47
Hungary Hungary 4,319,443,950 +14.5% 35
Indonesia Indonesia 3,760,052,545 +35.6% 36
India India 177,745,449,131 +9.32% 1
Iceland Iceland 535,520,206 -1.31% 67
Israel Israel 53,815,900,000 +6.7% 6
Italy Italy 9,580,908,452 +1.03% 22
Jamaica Jamaica 127,565,623 +0.00124% 78
Japan Japan 11,012,590,447 -6.36% 19
Kazakhstan Kazakhstan 880,992,944 +20.3% 58
Cambodia Cambodia 313,904,470 +31.5% 72
St. Kitts & Nevis St. Kitts & Nevis 4,009,121 +0.503% 102
South Korea South Korea 14,511,000,000 +9.06% 16
Kuwait Kuwait 5,471,545,644 +5.78% 28
St. Lucia St. Lucia 10,922,207 +1.5% 97
Lesotho Lesotho 15,284 +0.664% 109
Lithuania Lithuania 2,770,712,699 +19.6% 40
Luxembourg Luxembourg 5,253,098,105 -17.9% 29
Latvia Latvia 1,470,240,275 +6.98% 51
Moldova Moldova 721,380,000 +14.6% 60
Maldives Maldives 46,894,839 +7.48% 87
Mexico Mexico 2,397,516,378 +46.1% 43
North Macedonia North Macedonia 685,342,866 +14% 62
Malta Malta 417,917,778 +13.4% 70
Montenegro Montenegro 218,809,811 +4.06% 75
Mozambique Mozambique 9,116,548 -31.5% 98
Malaysia Malaysia 4,623,972,785 +14.7% 33
Namibia Namibia 26,028,083 +23.8% 91
Nigeria Nigeria 184,351,734 -3.11% 76
Nicaragua Nicaragua 252,300,000 -10% 73
Netherlands Netherlands 27,721,070,452 +4.92% 9
Norway Norway 4,741,971,391 +11.4% 32
Nepal Nepal 112,632,972 -9.29% 80
New Zealand New Zealand 1,182,002,720 -1.6% 55
Pakistan Pakistan 3,632,000,000 +33.6% 37
Panama Panama 537,030,328 +1.37% 66
Peru Peru 154,467,015 +18% 77
Philippines Philippines 8,085,429,150 +13.9% 24
Poland Poland 19,604,000,000 +16.3% 14
Portugal Portugal 5,083,949,749 +5.22% 30
Paraguay Paraguay 17,900,000 +16.2% 93
Palestinian Territories Palestinian Territories 91,019,192 -16.8% 83
Qatar Qatar 1,039,560,440 -21.9% 57
Romania Romania 11,002,034,690 -0.43% 20
Russia Russia 2,385,990,000 -17.3% 45
Saudi Arabia Saudi Arabia 1,719,231,346 +1.44% 49
Singapore Singapore 30,795,370,070 +5.2% 7
Solomon Islands Solomon Islands 2,541,793 -18.8% 104
El Salvador El Salvador 414,653,137 -1.9% 71
Suriname Suriname 22,355,497 +15.7% 92
Slovakia Slovakia 2,657,331,039 +22.7% 41
Slovenia Slovenia 1,199,848,583 +11.4% 54
Sweden Sweden 23,947,556,757 +6.64% 10
Thailand Thailand 512,398,070 +10.4% 68
Tajikistan Tajikistan 2,015,810 -70.3% 105
Timor-Leste Timor-Leste 2,000,060 +50.3% 106
Tonga Tonga 11,049,760 +1.97% 96
Trinidad & Tobago Trinidad & Tobago 33,489,136 -47.1% 88
Turkey Turkey 4,856,000,000 +14.2% 31
Ukraine Ukraine 6,610,000,000 -3.98% 26
Uruguay Uruguay 1,354,037,394 -0.00383% 53
United States United States 79,265,000,000 +12.2% 2
Uzbekistan Uzbekistan 619,736,903 +40.5% 64
St. Vincent & Grenadines St. Vincent & Grenadines 5,387,948 +3.02% 100
Samoa Samoa 28,815,115 +41.1% 89
South Africa South Africa 1,527,453,631 +14.3% 50

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'BX.GSR.CCIS.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'BX.GSR.CCIS.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))