ICT goods imports (% total goods imports)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Angola Angola 3.3 -20.3% 72
Albania Albania 0.21 -88.3% 100
Andorra Andorra 5.89 -1.17% 36
Argentina Argentina 7.95 -12.5% 21
Armenia Armenia 9.05 +78.1% 18
Australia Australia 8.52 -14.8% 20
Austria Austria 6.33 -7.18% 33
Azerbaijan Azerbaijan 4.54 -17.6% 53
Burundi Burundi 1.91 -35% 93
Belgium Belgium 3.24 -11.2% 75
Benin Benin 1.58 -37.1% 95
Bulgaria Bulgaria 4.8 -18.4% 50
Bahrain Bahrain 3.91 -19.7% 61
Bosnia & Herzegovina Bosnia & Herzegovina 2.39 -11.2% 89
Belize Belize 2.6 -2.99% 81
Bermuda Bermuda 2.4 -15.2% 88
Bolivia Bolivia 2.49 -20.7% 84
Brazil Brazil 6.13 -31.7% 34
Barbados Barbados 3.88 -30.5% 63
Brunei Brunei 1.53 -14% 96
Botswana Botswana 2.5 +10.1% 83
Canada Canada 6.75 -9.15% 31
Chile Chile 5.5 -38.8% 41
China China 22.1 -6.62% 3
Cyprus Cyprus 3.81 -19.8% 64
Czechia Czechia 16.7 -1.24% 5
Germany Germany 7.48 -12.3% 24
Denmark Denmark 6.89 -7.02% 29
Dominican Republic Dominican Republic 2.87 -42.3% 79
Egypt Egypt 2.55 -47.4% 82
Spain Spain 4.33 -18% 55
Estonia Estonia 6.13 -19.4% 34
Finland Finland 5.73 -17% 39
Fiji Fiji 4.13 -22.9% 56
France France 5.35 -17.1% 43
United Kingdom United Kingdom 7.26 -3.97% 25
Georgia Georgia 5.13 +5.99% 45
Greece Greece 3.97 -24.2% 60
Grenada Grenada 3.51 -31.2% 69
Guatemala Guatemala 5.82 -6.28% 38
Guyana Guyana 0.96 -45.5% 98
Hong Kong SAR China Hong Kong SAR China 57.2 -0.643% 1
Croatia Croatia 3.55 -24.3% 68
Hungary Hungary 10 -23.2% 14
India India 7.64 -18.6% 22
Ireland Ireland 11.3 -10.6% 11
Iceland Iceland 5.84 -24.3% 37
Israel Israel 9.27 -9.82% 17
Italy Italy 3.89 -25.3% 62
Jamaica Jamaica 2.67 -27% 80
Jordan Jordan 3.16 -26.2% 76
Japan Japan 11.3 -13.8% 12
Kazakhstan Kazakhstan 7.53 -12.9% 23
Kyrgyzstan Kyrgyzstan 5.03 +26.4% 46
South Korea South Korea 15.3 -6.61% 6
Lebanon Lebanon 5 +64.5% 48
Sri Lanka Sri Lanka 3.01 -51.5% 77
Lithuania Lithuania 4.7 -16.8% 52
Luxembourg Luxembourg 3.25 -12.4% 74
Latvia Latvia 7.24 -19.6% 26
Macao SAR China Macao SAR China 13.3 -15.1% 8
Morocco Morocco 3.64 -10.8% 67
Moldova Moldova 3.79 -7.56% 66
Mexico Mexico 13 -14.6% 10
North Macedonia North Macedonia 3.81 -8.63% 64
Malta Malta 9.41 +1.95% 16
Myanmar (Burma) Myanmar (Burma) 0.78 -68% 99
Montenegro Montenegro 3.8 +6.15% 65
Mozambique Mozambique 1.89 -25% 94
Mauritius Mauritius 4.99 -2.92% 49
Namibia Namibia 2.46 +12.8% 86
Niger Niger 1.29 -43.4% 97
Nicaragua Nicaragua 2.24 -11.5% 91
Netherlands Netherlands 9.57 -25.2% 15
Norway Norway 5.98 -11% 35
New Zealand New Zealand 6.92 -9.54% 28
Panama Panama 3.99 -22.8% 59
Philippines Philippines 19.4 -10.9% 4
Poland Poland 6.34 -32% 32
Portugal Portugal 5.59 -19.1% 40
Paraguay Paraguay 13.6 -7.36% 7
French Polynesia French Polynesia 4.49 -13.2% 54
Qatar Qatar 5.02 -25.4% 47
Romania Romania 6.96 -2.93% 27
Rwanda Rwanda 4.03 -24.2% 58
Singapore Singapore 31.1 -5.35% 2
El Salvador El Salvador 5.38 -17.5% 42
Serbia Serbia 3.5 -13.6% 70
São Tomé & Príncipe São Tomé & Príncipe 3.37 -16.2% 71
Suriname Suriname 2.05 +1.49% 92
Slovakia Slovakia 10.7 -14.4% 13
Slovenia Slovenia 3.26 -21.6% 73
Sweden Sweden 8.69 -11.4% 19
Togo Togo 2.48 +27.2% 85
Turkey Turkey 2.97 -27.6% 78
Tanzania Tanzania 2.42 -25.8% 87
Ukraine Ukraine 4.73 -11.8% 51
Uruguay Uruguay 5.32 -7.16% 44
United States United States 13 -7.29% 9
Uzbekistan Uzbekistan 4.07 -3.1% 57
South Africa South Africa 6.76 -14.2% 30
Zimbabwe Zimbabwe 2.3 +6.98% 90

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TM.VAL.ICTG.ZS.UN'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TM.VAL.ICTG.ZS.UN'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))