ICT goods exports (% of total goods exports)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Angola Angola 0.02 +100% 83
Albania Albania 0.01 -87.5% 84
Andorra Andorra 12.6 -40.4% 11
Argentina Argentina 0.03 0% 82
Armenia Armenia 9.78 +1,818% 14
Australia Australia 0.7 -19.5% 58
Austria Austria 4.88 -1.41% 22
Azerbaijan Azerbaijan 0.07 +250% 79
Burundi Burundi 0.1 -78.3% 77
Belgium Belgium 1.64 -11.4% 44
Benin Benin 0.05 +25% 81
Bulgaria Bulgaria 3.31 +0.608% 28
Bahrain Bahrain 0.68 -24.4% 59
Bosnia & Herzegovina Bosnia & Herzegovina 0.24 +50% 70
Belize Belize 0.14 -48.1% 75
Bermuda Bermuda 2.5 -44.8% 35
Bolivia Bolivia 0.03 -50% 82
Brazil Brazil 0.27 +3.85% 68
Barbados Barbados 1.1 +108% 50
Brunei Brunei 0.03 -25% 82
Botswana Botswana 0.16 +45.5% 74
Canada Canada 1.37 -7.43% 47
Chile Chile 0.29 +7.41% 66
China China 22.6 -11.2% 6
Cyprus Cyprus 1.66 -21% 43
Czechia Czechia 16.1 +3.54% 8
Germany Germany 4.77 -6.84% 23
Denmark Denmark 3.71 -5.84% 25
Dominican Republic Dominican Republic 0.56 -76.4% 61
Egypt Egypt 2.38 -17.4% 36
Spain Spain 1.37 -13.8% 47
Estonia Estonia 7.28 -25.7% 19
Finland Finland 2.6 +1.56% 34
Fiji Fiji 0.5 -75.6% 63
France France 3.65 +0.275% 26
United Kingdom United Kingdom 3.39 -7.88% 27
Georgia Georgia 1.26 -16% 48
Greece Greece 2.82 -7.24% 32
Grenada Grenada 1.79 +348% 42
Guatemala Guatemala 0.26 -13.3% 69
Guyana Guyana 0.01 -66.7% 84
Hong Kong SAR China Hong Kong SAR China 62.5 +2.11% 1
Croatia Croatia 1.6 -25.2% 45
Hungary Hungary 10.3 -15.9% 13
India India 2.77 +24.2% 33
Ireland Ireland 8.59 -6.02% 15
Iceland Iceland 0.19 -40.6% 72
Israel Israel 13.5 -4% 10
Italy Italy 1.99 -0.995% 40
Jamaica Jamaica 0.28 -17.6% 67
Jordan Jordan 0.68 -43.8% 59
Japan Japan 8.16 -5.23% 16
Kazakhstan Kazakhstan 1.85 +65.2% 41
Kyrgyzstan Kyrgyzstan 4.67 +30.4% 24
South Korea South Korea 27.7 -5.21% 4
Lebanon Lebanon 0.96 +74.5% 52
Sri Lanka Sri Lanka 0.19 -5% 72
Lithuania Lithuania 3.2 -6.71% 30
Luxembourg Luxembourg 1.24 -26.2% 49
Latvia Latvia 7.28 -18.1% 19
Macao SAR China Macao SAR China 19 -14% 7
Morocco Morocco 2.36 +10.8% 37
Moldova Moldova 0.27 +50% 68
Mexico Mexico 13.7 -4.46% 9
North Macedonia North Macedonia 0.63 +5% 60
Malta Malta 25.7 +59% 5
Myanmar (Burma) Myanmar (Burma) 0.17 -70.7% 73
Montenegro Montenegro 0.79 -32.5% 56
Mozambique Mozambique 0.03 +50% 82
Mauritius Mauritius 0.81 -8.99% 55
Namibia Namibia 0.21 -16% 71
Niger Niger 0.14 +40% 75
Nicaragua Nicaragua 0.03 -25% 82
Netherlands Netherlands 7.49 -24.6% 18
Norway Norway 0.47 -36.5% 64
New Zealand New Zealand 1.08 +8% 51
Philippines Philippines 50.7 +4.6% 2
Poland Poland 6.47 -4.57% 20
Portugal Portugal 3.28 -6.55% 29
Paraguay Paraguay 0.08 -11.1% 78
French Polynesia French Polynesia 2.01 +73.3% 39
Qatar Qatar 0 85
Romania Romania 2.83 -6.91% 31
Rwanda Rwanda 0.87 +4.82% 54
Singapore Singapore 32.7 -5.85% 3
El Salvador El Salvador 0.4 +8.11% 65
Serbia Serbia 1.43 -13.9% 46
São Tomé & Príncipe São Tomé & Príncipe 0.06 -72.7% 80
Suriname Suriname 0.08 -27.3% 78
Slovakia Slovakia 10.5 -12.7% 12
Slovenia Slovenia 2.17 -13.9% 38
Sweden Sweden 5.27 -11.1% 21
Togo Togo 0.13 +85.7% 76
Turkey Turkey 0.7 -20.5% 58
Tanzania Tanzania 0.13 +85.7% 76
Ukraine Ukraine 0.91 +33.8% 53
Uruguay Uruguay 0.07 +16.7% 79
United States United States 7.85 -13.5% 17
Uzbekistan Uzbekistan 0.53 +231% 62
South Africa South Africa 0.71 +4.41% 57
Zimbabwe Zimbabwe 0.02 +100% 83

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TX.VAL.ICTG.ZS.UN'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TX.VAL.ICTG.ZS.UN'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))