Gross savings (current US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 24,055,871,299 -0.0982% 47
Albania Albania 5,984,935,077 +15.7% 70
Argentina Argentina 96,196,360,930 -6.31% 31
Armenia Armenia 5,331,852,615 +16.6% 72
Australia Australia 405,384,081,338 -2.17% 10
Austria Austria 129,804,292,826 -4.74% 27
Azerbaijan Azerbaijan 20,338,656,059 -4.51% 52
Belgium Belgium 159,466,973,402 -0.119% 22
Bangladesh Bangladesh 154,703,622,919 +1.33% 23
Bulgaria Bulgaria 21,169,343,969 +0.597% 50
Bosnia & Herzegovina Bosnia & Herzegovina 6,112,943,654 +0.779% 69
Belarus Belarus 17,749,043,373 -7.79% 57
Brazil Brazil 315,383,306,047 -3.89% 16
Brunei Brunei 7,351,019,648 +6.16% 65
Canada Canada 479,455,297,956 +0.563% 9
Switzerland Switzerland 303,157,125,551 +3.49% 17
Chile Chile 71,863,067,569 +6.21% 33
Colombia Colombia 57,851,149,726 +24.7% 39
Cape Verde Cape Verde 542,695,944 +27% 82
Costa Rica Costa Rica 14,056,661,945 +13.6% 59
Cyprus Cyprus 3,868,966,161 +5.92% 75
Czechia Czechia 95,838,075,640 -9.71% 32
Germany Germany 1,257,895,327,504 +0.822% 2
Djibouti Djibouti 382,763,505 -35.6% 83
Denmark Denmark 148,878,712,790 +12% 24
Dominican Republic Dominican Republic 29,203,147,270 +0.436% 45
Ecuador Ecuador 29,808,967,188 +9.87% 43
Spain Spain 404,794,451,345 +5.62% 11
Estonia Estonia 10,217,489,327 +6.39% 61
Finland Finland 67,144,568,793 +2.54% 34
France France 685,981,250,640 +6.18% 4
United Kingdom United Kingdom 560,101,211,220 +10.4% 6
Georgia Georgia 6,248,332,198 +4.47% 68
Gambia Gambia 731,397,831 +7.73% 81
Greece Greece 29,514,029,520 +28.4% 44
Guatemala Guatemala 22,185,702,150 +8.87% 48
Hong Kong SAR China Hong Kong SAR China 116,572,224,332 +24.2% 29
Honduras Honduras 6,590,877,665 +8.1% 66
Croatia Croatia 21,084,186,686 +2.9% 51
Hungary Hungary 57,855,127,866 +2.62% 38
Indonesia Indonesia 483,916,805,184 -1.61% 8
India India 1,174,153,990,212 +4.3% 3
Iceland Iceland 8,043,575,055 -2.93% 64
Israel Israel 144,274,756,776 -5.68% 25
Italy Italy 551,784,276,633 +3.82% 7
Cambodia Cambodia 18,285,255,346 +11.2% 56
Lithuania Lithuania 19,415,923,744 +5.63% 53
Luxembourg Luxembourg 17,190,217,294 +17.3% 58
Latvia Latvia 8,283,461,132 -2.27% 63
Moldova Moldova 927,293,626 -36.7% 79
Mexico Mexico 352,430,915,509 -2.18% 14
North Macedonia North Macedonia 4,377,232,943 -7.47% 74
Malta Malta 5,277,309,716 +5.11% 73
Montenegro Montenegro 915,880,010 -25% 80
Mozambique Mozambique 1,757,441,233 +202% 77
Malaysia Malaysia 99,319,880,667 +3.49% 30
Namibia Namibia 1,156,161,963 -15.3% 78
Nicaragua Nicaragua 5,517,358,132 +3.87% 71
Netherlands Netherlands 358,757,142,653 +4.24% 13
Norway Norway 199,145,183,140 -4.58% 19
Nepal Nepal 18,656,371,731 +25.5% 55
Pakistan Pakistan 51,184,022,625 +17% 41
Peru Peru 63,232,967,063 +19.2% 36
Philippines Philippines 134,976,801,247 +13% 26
Poland Poland 163,375,440,507 +4.08% 21
Portugal Portugal 66,791,732,871 +11.6% 35
Paraguay Paraguay 8,388,411,529 -1.6% 62
Palestinian Territories Palestinian Territories 2,284,663,119 -2.16% 76
Romania Romania 61,005,241,484 -8.72% 37
Russia Russia 665,766,326,578 +3.55% 5
Saudi Arabia Saudi Arabia 366,917,950,430 -5.71% 12
Singapore Singapore 220,468,288,483 +12.8% 18
El Salvador El Salvador 6,562,175,989 -1.09% 67
Slovakia Slovakia 24,608,223,606 -1.64% 46
Slovenia Slovenia 18,763,077,574 +0.972% 54
Sweden Sweden 193,026,524,600 +4.42% 20
Thailand Thailand 126,562,683,164 -3.12% 28
Turkey Turkey 325,852,582,343 +9.76% 15
Ukraine Ukraine 21,609,699,883 -6.74% 49
Uruguay Uruguay 11,687,981,586 +6.47% 60
United States United States 5,294,183,000,000 +4.08% 1
Uzbekistan Uzbekistan 32,522,694,695 +19.1% 42
Samoa Samoa 275,788,452 +37.6% 84
South Africa South Africa 53,305,486,937 -2.31% 40

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.GNS.ICTR.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.GNS.ICTR.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))