Grants, excluding technical cooperation (BoP, current US$)

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 3,749,710,000 -13.4% 5
Angola Angola 158,570,000 -30.2% 81
Albania Albania 227,500,000 -13.9% 71
Argentina Argentina 125,350,000 +106% 90
Armenia Armenia 106,320,000 -18.8% 98
Azerbaijan Azerbaijan 58,790,000 +0.376% 116
Burundi Burundi 544,730,000 +8.67% 42
Benin Benin 510,490,000 -13.1% 46
Burkina Faso Burkina Faso 1,122,730,000 -12.8% 23
Bangladesh Bangladesh 1,257,650,000 -22% 19
Bosnia & Herzegovina Bosnia & Herzegovina 231,600,000 -19.1% 69
Belarus Belarus 78,440,000 +23.1% 108
Belize Belize 16,750,000 -70.9% 129
Bolivia Bolivia 198,220,000 +82.1% 75
Brazil Brazil 173,500,000 -25.1% 79
Bhutan Bhutan 54,570,000 -10.5% 118
Botswana Botswana 71,730,000 -20.3% 112
Central African Republic Central African Republic 598,790,000 +4.2% 40
China China 109,170,000 -31.3% 97
Côte d’Ivoire Côte d’Ivoire 793,460,000 +34.9% 30
Cameroon Cameroon 724,060,000 +29.7% 36
Congo - Kinshasa Congo - Kinshasa 2,724,450,000 +1% 7
Congo - Brazzaville Congo - Brazzaville 110,170,000 +7% 96
Colombia Colombia 1,058,080,000 -14.2% 24
Comoros Comoros 95,270,000 -19.4% 102
Cape Verde Cape Verde 49,590,000 -25.9% 120
Costa Rica Costa Rica 69,990,000 -47.3% 113
Cuba Cuba 94,960,000 -8.8% 103
Djibouti Djibouti 128,770,000 +10.9% 89
Dominica Dominica 20,210,000 -45.5% 126
Dominican Republic Dominican Republic 105,080,000 -16.9% 99
Algeria Algeria 76,460,000 -32.1% 109
Ecuador Ecuador 195,870,000 +1.99% 76
Egypt Egypt 5,559,280,000 -1.19% 3
Eritrea Eritrea 55,290,000 +24.6% 117
Ethiopia Ethiopia 4,050,010,000 +21.1% 4
Fiji Fiji 79,930,000 -71.9% 107
Micronesia (Federated States of) Micronesia (Federated States of) 148,150,000 +13.4% 85
Gabon Gabon 18,220,000 -60.7% 128
Georgia Georgia 229,300,000 -16.5% 70
Ghana Ghana 527,220,000 -28.5% 43
Guinea Guinea 321,580,000 -18.4% 60
Gambia Gambia 201,970,000 +42.2% 73
Guinea-Bissau Guinea-Bissau 115,360,000 +11.6% 93
Equatorial Guinea Equatorial Guinea 12,450,000 -15% 132
Grenada Grenada 1,860,000 -93.5% 136
Guatemala Guatemala 390,080,000 -13.4% 55
Guyana Guyana 23,520,000 -41.8% 125
Honduras Honduras 293,120,000 -19.9% 63
Haiti Haiti 820,770,000 -14% 29
Indonesia Indonesia 836,730,000 -19.2% 28
India India 690,710,000 -11.9% 37
Iran Iran 122,110,000 -18.7% 91
Iraq Iraq 746,130,000 -43.5% 32
Jamaica Jamaica 85,130,000 +31.3% 104
Jordan Jordan 1,341,540,000 -41.9% 17
Kazakhstan Kazakhstan 73,960,000 +1.34% 111
Kenya Kenya 1,343,580,000 -4.16% 16
Kyrgyzstan Kyrgyzstan 338,790,000 +5.53% 57
Cambodia Cambodia 492,310,000 -3.01% 48
Kiribati Kiribati 74,320,000 +32.7% 110
Laos Laos 332,490,000 -13.4% 59
Lebanon Lebanon 1,228,410,000 -6% 20
Liberia Liberia 347,270,000 -24.5% 56
Libya Libya 192,710,000 -31.6% 77
St. Lucia St. Lucia 11,500,000 -78.3% 134
Sri Lanka Sri Lanka 238,820,000 -1.42% 67
Lesotho Lesotho 136,640,000 -8.8% 86
Morocco Morocco 414,530,000 -24.2% 54
Moldova Moldova 515,010,000 +82.3% 44
Madagascar Madagascar 667,220,000 +12.1% 38
Maldives Maldives 100,190,000 +12.7% 101
Mexico Mexico 316,300,000 +25.2% 61
Marshall Islands Marshall Islands 135,730,000 +26.1% 87
North Macedonia North Macedonia 113,700,000 -34.5% 95
Mali Mali 980,750,000 -15.5% 26
Myanmar (Burma) Myanmar (Burma) 732,100,000 -19.8% 33
Montenegro Montenegro 43,060,000 -33.3% 122
Mongolia Mongolia 148,490,000 -12.3% 84
Mozambique Mozambique 2,489,480,000 +17.9% 8
Mauritania Mauritania 275,290,000 -31.1% 64
Mauritius Mauritius 26,710,000 -28.1% 124
Malawi Malawi 1,053,970,000 +10.9% 25
Malaysia Malaysia 46,920,000 -23.3% 121
Namibia Namibia 155,160,000 +2.72% 83
Niger Niger 1,210,680,000 -6.88% 21
Nigeria Nigeria 2,001,720,000 -6.99% 10
Nicaragua Nicaragua 134,630,000 -25.9% 88
Nepal Nepal 480,810,000 -28.3% 49
Nauru Nauru 31,350,000 +2.32% 123
Pakistan Pakistan 1,166,590,000 +7.39% 22
Panama Panama 53,500,000 -1.78% 119
Peru Peru 335,970,000 -0.193% 58
Philippines Philippines 447,750,000 -10.8% 52
Palau Palau 18,670,000 -14% 127
Papua New Guinea Papua New Guinea 436,980,000 -25.4% 53
North Korea North Korea 11,640,000 -42.7% 133
Paraguay Paraguay 64,420,000 -25.3% 114
Palestinian Territories Palestinian Territories 2,073,570,000 +4.34% 9
Rwanda Rwanda 726,070,000 -16% 35
Sudan Sudan 1,545,440,000 -56% 14
Senegal Senegal 512,020,000 -9.82% 45
Solomon Islands Solomon Islands 199,870,000 +0.513% 74
Sierra Leone Sierra Leone 476,790,000 -6.67% 51
El Salvador El Salvador 207,420,000 +14.8% 72
Somalia Somalia 1,853,320,000 -24.5% 12
Serbia Serbia 296,810,000 -17.1% 62
South Sudan South Sudan 1,981,750,000 +5.47% 11
São Tomé & Príncipe São Tomé & Príncipe 80,240,000 +28.5% 106
Suriname Suriname 13,750,000 -31.5% 131
Eswatini Eswatini 103,960,000 -7.81% 100
Syria Syria 8,017,410,000 -14.8% 2
Chad Chad 661,560,000 +7.37% 39
Togo Togo 272,340,000 +16.4% 65
Thailand Thailand 169,070,000 +1.75% 80
Tajikistan Tajikistan 506,840,000 +25.1% 47
Turkmenistan Turkmenistan 15,770,000 -35.9% 130
Timor-Leste Timor-Leste 156,920,000 -12.5% 82
Tonga Tonga 116,700,000 +23.9% 92
Tunisia Tunisia 551,910,000 +40.8% 41
Turkey Turkey 1,453,650,000 -28.7% 15
Tuvalu Tuvalu 60,950,000 +90.5% 115
Tanzania Tanzania 1,284,040,000 -10.7% 18
Uganda Uganda 1,690,290,000 -4.28% 13
Ukraine Ukraine 15,634,020,000 +1,614% 1
Uzbekistan Uzbekistan 187,150,000 +8.04% 78
St. Vincent & Grenadines St. Vincent & Grenadines 5,000,000 -72.9% 135
Venezuela Venezuela 255,890,000 +1.07% 66
Vietnam Vietnam 480,280,000 -16.7% 50
Vanuatu Vanuatu 80,710,000 -35.9% 105
Samoa Samoa 113,960,000 +55.5% 94
Kosovo Kosovo 236,650,000 -15.8% 68
Yemen Yemen 3,302,670,000 -14.8% 6
South Africa South Africa 872,510,000 -20.5% 27
Zambia Zambia 782,400,000 -8.42% 31
Zimbabwe Zimbabwe 731,160,000 -22.4% 34

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'BX.GRT.EXTA.CD.WD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'BX.GRT.EXTA.CD.WD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))