Government Effectiveness: Number of Sources

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 2 0% 12
Afghanistan Afghanistan 6 0% 8
Angola Angola 8 0% 6
Albania Albania 6 0% 8
Andorra Andorra 1 0% 13
United Arab Emirates United Arab Emirates 7 0% 7
Argentina Argentina 8 0% 6
Armenia Armenia 6 0% 8
American Samoa American Samoa 1 0% 13
Antigua & Barbuda Antigua & Barbuda 1 0% 13
Australia Australia 6 0% 8
Austria Austria 8 +14.3% 6
Azerbaijan Azerbaijan 5 0% 9
Burundi Burundi 7 0% 7
Belgium Belgium 7 0% 7
Benin Benin 10 0% 4
Burkina Faso Burkina Faso 10 0% 4
Bangladesh Bangladesh 10 +11.1% 4
Bulgaria Bulgaria 9 +12.5% 5
Bahrain Bahrain 7 0% 7
Bahamas Bahamas 3 0% 11
Bosnia & Herzegovina Bosnia & Herzegovina 6 +20% 8
Belarus Belarus 4 0% 10
Belize Belize 2 0% 12
Bermuda Bermuda 1 0% 13
Bolivia Bolivia 8 0% 6
Brazil Brazil 8 0% 6
Barbados Barbados 4 +33.3% 10
Brunei Brunei 3 0% 11
Bhutan Bhutan 6 0% 8
Botswana Botswana 9 +12.5% 5
Central African Republic Central African Republic 8 +14.3% 6
Canada Canada 6 0% 8
Switzerland Switzerland 6 0% 8
Chile Chile 8 0% 6
China China 7 0% 7
Côte d’Ivoire Côte d’Ivoire 12 +9.09% 2
Cameroon Cameroon 11 0% 3
Congo - Kinshasa Congo - Kinshasa 10 0% 4
Congo - Brazzaville Congo - Brazzaville 8 0% 6
Colombia Colombia 9 +12.5% 5
Comoros Comoros 6 0% 8
Cape Verde Cape Verde 7 0% 7
Costa Rica Costa Rica 8 +14.3% 6
Cuba Cuba 4 0% 10
Cayman Islands Cayman Islands 2 0% 12
Cyprus Cyprus 7 0% 7
Czechia Czechia 8 0% 6
Germany Germany 8 +14.3% 6
Djibouti Djibouti 7 0% 7
Dominica Dominica 2 0% 12
Denmark Denmark 7 0% 7
Dominican Republic Dominican Republic 7 0% 7
Algeria Algeria 7 +16.7% 7
Ecuador Ecuador 7 0% 7
Egypt Egypt 8 0% 6
Eritrea Eritrea 7 0% 7
Spain Spain 8 +14.3% 6
Estonia Estonia 9 +12.5% 5
Ethiopia Ethiopia 9 0% 5
Finland Finland 7 0% 7
Fiji Fiji 3 0% 11
France France 8 +14.3% 6
Micronesia (Federated States of) Micronesia (Federated States of) 3 0% 11
Gabon Gabon 7 0% 7
United Kingdom United Kingdom 6 0% 8
Georgia Georgia 6 +20% 8
Ghana Ghana 13 +18.2% 1
Guinea Guinea 10 0% 4
Gambia Gambia 11 +10% 3
Guinea-Bissau Guinea-Bissau 7 0% 7
Equatorial Guinea Equatorial Guinea 4 0% 10
Greece Greece 8 +14.3% 6
Grenada Grenada 2 0% 12
Greenland Greenland 1 0% 13
Guatemala Guatemala 7 0% 7
Guam Guam 1 0% 13
Guyana Guyana 4 0% 10
Hong Kong SAR China Hong Kong SAR China 7 +16.7% 7
Honduras Honduras 9 0% 5
Croatia Croatia 8 +14.3% 6
Haiti Haiti 6 0% 8
Hungary Hungary 9 +12.5% 5
Indonesia Indonesia 9 +12.5% 5
India India 9 +12.5% 5
Ireland Ireland 7 0% 7
Iran Iran 6 +20% 8
Iraq Iraq 6 +20% 8
Iceland Iceland 6 0% 8
Israel Israel 6 0% 8
Italy Italy 7 0% 7
Jamaica Jamaica 6 +20% 8
Jordan Jordan 7 0% 7
Japan Japan 6 0% 8
Kazakhstan Kazakhstan 7 0% 7
Kenya Kenya 11 0% 3
Kyrgyzstan Kyrgyzstan 9 +12.5% 5
Cambodia Cambodia 9 +12.5% 5
Kiribati Kiribati 3 0% 11
St. Kitts & Nevis St. Kitts & Nevis 1 0% 13
South Korea South Korea 7 0% 7
Kuwait Kuwait 7 0% 7
Laos Laos 8 0% 6
Lebanon Lebanon 5 0% 9
Liberia Liberia 11 +10% 3
Libya Libya 6 0% 8
St. Lucia St. Lucia 2 0% 12
Liechtenstein Liechtenstein 2 0% 12
Sri Lanka Sri Lanka 7 0% 7
Lesotho Lesotho 11 +10% 3
Lithuania Lithuania 8 0% 6
Luxembourg Luxembourg 7 0% 7
Latvia Latvia 8 0% 6
Macao SAR China Macao SAR China 2 0% 12
Morocco Morocco 10 +11.1% 4
Monaco Monaco 1 0% 13
Moldova Moldova 5 0% 9
Madagascar Madagascar 11 +10% 3
Maldives Maldives 3 0% 11
Mexico Mexico 9 +12.5% 5
Marshall Islands Marshall Islands 3 0% 11
North Macedonia North Macedonia 6 +20% 8
Mali Mali 11 0% 3
Malta Malta 6 0% 8
Myanmar (Burma) Myanmar (Burma) 6 0% 8
Montenegro Montenegro 6 +20% 8
Mongolia Mongolia 9 0% 5
Mozambique Mozambique 10 0% 4
Mauritania Mauritania 9 0% 5
Mauritius Mauritius 8 +14.3% 6
Malawi Malawi 11 0% 3
Malaysia Malaysia 7 0% 7
Namibia Namibia 7 0% 7
Niger Niger 10 0% 4
Nigeria Nigeria 11 +10% 3
Nicaragua Nicaragua 6 -14.3% 8
Netherlands Netherlands 7 0% 7
Norway Norway 5 0% 9
Nepal Nepal 9 +12.5% 5
Nauru Nauru 2 0% 12
New Zealand New Zealand 7 +16.7% 7
Oman Oman 5 +25% 9
Pakistan Pakistan 10 +11.1% 4
Panama Panama 7 0% 7
Peru Peru 9 +12.5% 5
Philippines Philippines 9 +12.5% 5
Palau Palau 2 0% 12
Papua New Guinea Papua New Guinea 7 0% 7
Poland Poland 8 0% 6
Puerto Rico Puerto Rico 4 +33.3% 10
North Korea North Korea 4 0% 10
Portugal Portugal 8 +14.3% 6
Paraguay Paraguay 8 +14.3% 6
Palestinian Territories Palestinian Territories 4 +33.3% 10
Qatar Qatar 6 0% 8
Romania Romania 9 +12.5% 5
Russia Russia 5 0% 9
Rwanda Rwanda 9 +12.5% 5
Saudi Arabia Saudi Arabia 8 +14.3% 6
Sudan Sudan 9 0% 5
Senegal Senegal 11 0% 3
Singapore Singapore 8 +14.3% 6
Solomon Islands Solomon Islands 4 0% 10
Sierra Leone Sierra Leone 12 +9.09% 2
El Salvador El Salvador 9 +12.5% 5
San Marino San Marino 1 0% 13
Somalia Somalia 7 0% 7
Serbia Serbia 6 0% 8
South Sudan South Sudan 6 0% 8
São Tomé & Príncipe São Tomé & Príncipe 7 0% 7
Suriname Suriname 3 0% 11
Slovakia Slovakia 9 +12.5% 5
Slovenia Slovenia 8 0% 6
Sweden Sweden 7 0% 7
Eswatini Eswatini 7 0% 7
Seychelles Seychelles 4 +33.3% 10
Syria Syria 5 0% 9
Chad Chad 10 +11.1% 4
Togo Togo 11 +10% 3
Thailand Thailand 7 0% 7
Tajikistan Tajikistan 7 0% 7
Turkmenistan Turkmenistan 3 0% 11
Timor-Leste Timor-Leste 6 +20% 8
Tonga Tonga 3 0% 11
Trinidad & Tobago Trinidad & Tobago 5 0% 9
Tunisia Tunisia 9 0% 5
Turkey Turkey 7 0% 7
Tuvalu Tuvalu 3 0% 11
Tanzania Tanzania 12 +9.09% 2
Uganda Uganda 10 0% 4
Ukraine Ukraine 6 0% 8
Uruguay Uruguay 7 0% 7
United States United States 6 0% 8
Uzbekistan Uzbekistan 8 0% 6
St. Vincent & Grenadines St. Vincent & Grenadines 2 0% 12
Venezuela Venezuela 8 0% 6
U.S. Virgin Islands U.S. Virgin Islands 1 0% 13
Vietnam Vietnam 8 +14.3% 6
Vanuatu Vanuatu 5 +25% 9
Samoa Samoa 4 +33.3% 10
Kosovo Kosovo 6 0% 8
Yemen Yemen 7 0% 7
South Africa South Africa 9 0% 5
Zambia Zambia 10 0% 4
Zimbabwe Zimbabwe 11 +10% 3

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'GE.NO.SRC'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'GE.NO.SRC'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))