Forest rents (% of GDP)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 0.00207 -32% 164
Afghanistan Afghanistan 0.389 +33.1% 75
Angola Angola 0.681 -14.8% 64
Albania Albania 0.138 +3.19% 104
Andorra Andorra 0 177
United Arab Emirates United Arab Emirates 0.000106 -21.5% 175
Argentina Argentina 0.139 -29.4% 103
Armenia Armenia 0.268 -0.926% 87
American Samoa American Samoa 0 177
Antigua & Barbuda Antigua & Barbuda 0 177
Australia Australia 0.123 -15.9% 108
Austria Austria 0.056 +15.9% 124
Azerbaijan Azerbaijan 0.0188 -15% 139
Burundi Burundi 14 +0.791% 3
Belgium Belgium 0.0135 -1.59% 145
Benin Benin 2.3 -3.29% 31
Burkina Faso Burkina Faso 4.68 -2.86% 15
Bangladesh Bangladesh 0.0752 -6.17% 120
Bulgaria Bulgaria 0.172 -14% 97
Bahrain Bahrain 0.000448 -16.1% 171
Bahamas Bahamas 0.0148 -23.2% 142
Bosnia & Herzegovina Bosnia & Herzegovina 0.472 -17.1% 72
Belarus Belarus 1.01 -12% 54
Belize Belize 0.241 -29.5% 88
Bermuda Bermuda 0 177
Bolivia Bolivia 0.44 -22% 73
Brazil Brazil 0.763 -19.9% 60
Barbados Barbados 0.0118 -15.5% 149
Brunei Brunei 0.0489 -14.1% 127
Bhutan Bhutan 2.66 -2.97% 27
Botswana Botswana 0.296 -10.2% 80
Central African Republic Central African Republic 9.49 -2.12% 6
Canada Canada 0.068 -9.48% 122
Switzerland Switzerland 0.0086 +10.2% 152
Chile Chile 0.643 -25.3% 65
China China 0.0708 -17.6% 121
Côte d’Ivoire Côte d’Ivoire 1.22 -7.14% 46
Cameroon Cameroon 2.58 -4.46% 29
Congo - Kinshasa Congo - Kinshasa 9.36 -5.74% 7
Congo - Brazzaville Congo - Brazzaville 2.97 -16.8% 23
Colombia Colombia 0.088 -36.5% 115
Comoros Comoros 1.63 +1.83% 42
Cape Verde Cape Verde 0.478 -6.76% 71
Costa Rica Costa Rica 0.754 -16.3% 62
Curaçao Curaçao 0 177
Cayman Islands Cayman Islands 0 177
Cyprus Cyprus 0.00084 +4.05% 167
Czechia Czechia 0.279 -21.3% 84
Germany Germany 0.0309 +10.6% 134
Djibouti Djibouti 0.277 -14% 85
Dominica Dominica 0.0331 -28.6% 132
Denmark Denmark 0.0133 +0.964% 147
Dominican Republic Dominican Republic 0.0323 -26.4% 133
Algeria Algeria 0.129 -16.9% 105
Ecuador Ecuador 0.283 -19.9% 82
Egypt Egypt 0.108 -15.6% 112
Spain Spain 0.018 -7.88% 140
Estonia Estonia 0.759 -20% 61
Ethiopia Ethiopia 5.6 +3.5% 12
Finland Finland 0.294 +15.5% 81
Fiji Fiji 1.13 +15.9% 51
France France 0.0253 +8.51% 136
Faroe Islands Faroe Islands 0 177
Micronesia (Federated States of) Micronesia (Federated States of) 0.0178 -11.1% 141
Gabon Gabon 2.65 -19.8% 28
United Kingdom United Kingdom 0 177
Georgia Georgia 0.065 -23.5% 123
Ghana Ghana 3.76 -1.1% 21
Guinea Guinea 4.52 -6.38% 17
Gambia Gambia 2.86 -5.85% 25
Guinea-Bissau Guinea-Bissau 10.4 -6.48% 5
Equatorial Guinea Equatorial Guinea 1.93 -12.9% 36
Greece Greece 0.00858 -5.38% 153
Grenada Grenada 0 177
Guatemala Guatemala 0.689 -27.2% 63
Guam Guam 0 177
Guyana Guyana 2.22 -42.5% 33
Hong Kong SAR China Hong Kong SAR China 0.000636 -17.1% 170
Honduras Honduras 0.839 -31.9% 58
Croatia Croatia 0.218 -13.8% 90
Haiti Haiti 0.328 -43.3% 78
Hungary Hungary 0.0781 -7.35% 118
Indonesia Indonesia 0.418 -9.35% 74
India India 0.161 -13.7% 102
Ireland Ireland 0.0117 +0.937% 150
Iran Iran 0.008 -35.1% 154
Iraq Iraq 0.00324 -15.2% 161
Iceland Iceland 0.000107 -1.68% 174
Israel Israel 0.000174 -26.5% 173
Italy Italy 0.00997 +0.751% 151
Jamaica Jamaica 0.163 -21.4% 100
Jordan Jordan 0.0203 -8.24% 137
Japan Japan 0.0287 +21.9% 135
Kazakhstan Kazakhstan 0.00769 +2.25% 155
Kenya Kenya 1.22 -3.53% 47
Kyrgyzstan Kyrgyzstan 0.014 -1.35% 144
Cambodia Cambodia 0.789 -15.7% 59
Kiribati Kiribati 0.0435 -23.7% 128
St. Kitts & Nevis St. Kitts & Nevis 0 177
South Korea South Korea 0.0147 -1.23% 143
Laos Laos 1.49 -5.89% 44
Lebanon Lebanon 0.00276 +23.5% 162
Liberia Liberia 16.5 -5.64% 2
Libya Libya 0.0765 +11.4% 119
St. Lucia St. Lucia 0.0134 -30.6% 146
Sri Lanka Sri Lanka 0.0832 -2.11% 117
Lesotho Lesotho 4.32 -5.22% 18
Lithuania Lithuania 0.27 -10.6% 86
Luxembourg Luxembourg 0.00475 -28.7% 156
Latvia Latvia 1.1 -11.5% 52
Macao SAR China Macao SAR China 0.000725 -21.6% 169
Morocco Morocco 0.116 -18.3% 111
Monaco Monaco 0 177
Moldova Moldova 0.224 -6.5% 89
Madagascar Madagascar 5.45 -2.9% 13
Maldives Maldives 0.0037 -26.3% 158
Mexico Mexico 0.105 -28.3% 113
Marshall Islands Marshall Islands 0 177
North Macedonia North Macedonia 0.128 -8.55% 107
Mali Mali 2.23 -3.36% 32
Malta Malta 0 177
Myanmar (Burma) Myanmar (Burma) 2.17 +12.3% 34
Montenegro Montenegro 0.479 -22.3% 70
Mongolia Mongolia 0.174 -17.4% 96
Mozambique Mozambique 7.34 -5.82% 10
Mauritania Mauritania 1.19 -9.31% 48
Mauritius Mauritius 0.00272 +3.24% 163
Malawi Malawi 4.2 +2.75% 19
Malaysia Malaysia 1.7 -8.48% 40
Namibia Namibia 0.863 -3.48% 57
New Caledonia New Caledonia 0.0123 -3.04% 148
Niger Niger 4.89 -0.805% 14
Nigeria Nigeria 1.13 +4.2% 50
Nicaragua Nicaragua 1.14 -28.7% 49
Netherlands Netherlands 0.00385 +0.205% 157
Norway Norway 0.0404 -1.98% 130
Nepal Nepal 0.493 -5.11% 69
Nauru Nauru 0 177
New Zealand New Zealand 0.97 +3.33% 56
Oman Oman 0.00136 -19.9% 165
Pakistan Pakistan 0.129 -11% 106
Panama Panama 0.0862 -28.5% 116
Peru Peru 0.119 -11.6% 110
Philippines Philippines 0.164 -13.7% 98
Palau Palau 0 177
Papua New Guinea Papua New Guinea 1.96 -12.6% 35
Poland Poland 0.164 -12.4% 99
Puerto Rico Puerto Rico 0 177
Portugal Portugal 0.0909 -4.78% 114
Paraguay Paraguay 1.27 -22.9% 45
Palestinian Territories Palestinian Territories 0 177
French Polynesia French Polynesia 0.00357 -12% 159
Qatar Qatar 0.00007 -25.3% 176
Romania Romania 0.177 -9.93% 95
Russia Russia 0.314 -21.8% 79
Rwanda Rwanda 3.97 -2.69% 20
Saudi Arabia Saudi Arabia 0.000897 -19.8% 166
Sudan Sudan 2.81 -16.6% 26
Senegal Senegal 1.5 -5.91% 43
Singapore Singapore 0.000181 -25.2% 172
Solomon Islands Solomon Islands 18.4 -4.16% 1
Sierra Leone Sierra Leone 8.82 +7.28% 8
El Salvador El Salvador 0.535 -30% 68
Somalia Somalia 11.2 -1.92% 4
Serbia Serbia 0.331 -11.7% 77
São Tomé & Príncipe São Tomé & Príncipe 1.88 -4.84% 38
Suriname Suriname 1.65 +3.03% 41
Slovakia Slovakia 0.199 -3.25% 93
Slovenia Slovenia 0.162 -17.4% 101
Sweden Sweden 0.18 -0.118% 94
Eswatini Eswatini 2.86 -13.4% 24
Seychelles Seychelles 0.121 -8.25% 109
Turks & Caicos Islands Turks & Caicos Islands 0.00327 -21.6% 160
Chad Chad 4.58 -2.62% 16
Togo Togo 2.98 -4.62% 22
Thailand Thailand 0.362 -3.62% 76
Tajikistan Tajikistan 1.01 +1.02% 55
Timor-Leste Timor-Leste 0.0537 -50.3% 126
Tonga Tonga 0.0408 +4.38% 129
Trinidad & Tobago Trinidad & Tobago 0.0543 -22.7% 125
Tunisia Tunisia 0.209 -15.4% 91
Turkey Turkey 0 -100% 177
Tuvalu Tuvalu 0 177
Tanzania Tanzania 2.39 -2.87% 30
Uganda Uganda 7.48 -1.16% 9
Ukraine Ukraine 0.209 -23.1% 92
Uruguay Uruguay 1.91 -16.8% 37
United States United States 0.0377 +2.49% 131
Uzbekistan Uzbekistan 0.000734 -25.9% 168
St. Vincent & Grenadines St. Vincent & Grenadines 0.0193 -24.6% 138
Vietnam Vietnam 1.07 -5.34% 53
Vanuatu Vanuatu 0.568 -9.76% 67
Samoa Samoa 0.28 -7.08% 83
Kosovo Kosovo 0 177
South Africa South Africa 0.63 -15.2% 66
Zambia Zambia 6.78 -13.6% 11
Zimbabwe Zimbabwe 1.82 -19.6% 39

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.GDP.FRST.RT.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.GDP.FRST.RT.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))