Foreign direct investment, net outflows (% of GDP)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 0.0411 +4.64% 81
Albania Albania 0.959 -14.1% 38
Argentina Argentina 0.425 -7.33% 61
Armenia Armenia 0.245 +9.35% 67
Antigua & Barbuda Antigua & Barbuda 0.803 -12.4% 46
Australia Australia 0.894 +13.6% 41
Austria Austria 2.07 +26.7% 15
Azerbaijan Azerbaijan 0.999 -61.4% 37
Belgium Belgium -0.914 -55.9% 97
Bangladesh Bangladesh -0.000459 -2.62% 86
Bulgaria Bulgaria 0.922 -26% 39
Bahrain Bahrain 0.576 -76.1% 57
Bahamas Bahamas 1.03 -30.3% 35
Bosnia & Herzegovina Bosnia & Herzegovina 0.278 -23.9% 66
Belarus Belarus 0.195 +117% 72
Belize Belize 0.0743 +1% 79
Brazil Brazil 1.12 -2.78% 30
Canada Canada 3.76 -7.9% 8
Switzerland Switzerland -3.71 -256% 98
Chile Chile 1.09 -58.4% 32
China China 0.919 -25.6% 40
Colombia Colombia 1.1 +218% 31
Cape Verde Cape Verde 0.739 +151% 47
Costa Rica Costa Rica 1.05 -7.86% 33
Czechia Czechia 3.24 +31.6% 9
Germany Germany 1.72 -24.6% 22
Dominica Dominica 0.0608 -0.000157% 80
Denmark Denmark 7.26 +173% 4
Dominican Republic Dominican Republic -0.0381 -113% 89
Spain Spain 3.05 +24.4% 11
Estonia Estonia -8.67 -262% 99
Finland Finland 1.86 -612% 20
France France 1.49 +15.3% 24
United Kingdom United Kingdom 1.87 +109% 18
Georgia Georgia 1.37 -10.9% 27
Greece Greece 0.697 -58.1% 51
Grenada Grenada 0.195 -243% 71
Guatemala Guatemala 0.729 +16.3% 48
Hong Kong SAR China Hong Kong SAR China 19.2 -24% 2
Honduras Honduras 1.86 +178% 19
Croatia Croatia 3.01 +86% 12
Hungary Hungary -21.7 -36.5% 100
Indonesia Indonesia 0.664 +27.9% 53
India India 0.607 +59.3% 55
Iceland Iceland 1.36 +26.2% 28
Israel Israel 1.94 +25.5% 16
Italy Italy 1.44 +8.24% 26
Jamaica Jamaica 0.00536 -127% 85
Japan Japan 5.17 +11.5% 7
Kazakhstan Kazakhstan -0.656 -157% 96
Cambodia Cambodia 0.371 +3.65% 63
St. Kitts & Nevis St. Kitts & Nevis 0.225 -345% 69
Kuwait Kuwait 6.44 -4.87% 5
St. Lucia St. Lucia -0.319 -74.2% 93
Lithuania Lithuania 0.184 -93.9% 74
Latvia Latvia 0.511 -78.7% 58
Moldova Moldova 0.492 +427% 60
Mexico Mexico 0.687 +1,532% 52
North Macedonia North Macedonia -0.0179 -102% 87
Malta Malta 127 +17.3% 1
Montenegro Montenegro 0.84 +10.4% 43
Mozambique Mozambique -0.197 -124% 90
Malaysia Malaysia 3.09 +55.1% 10
Namibia Namibia 0.306 -112% 64
Nigeria Nigeria 0.217 +209% 70
Nicaragua Nicaragua 0.375 +58.5% 62
Netherlands Netherlands 1.04 -104% 34
Norway Norway -0.613 -129% 95
New Zealand New Zealand 0.58 -740% 56
Pakistan Pakistan 0.0225 +138% 83
Panama Panama 1 -16.6% 36
Philippines Philippines 0.622 -22.9% 54
Poland Poland 0.849 -53.3% 42
Portugal Portugal 2.17 +11.6% 14
Paraguay Paraguay 0.146 -75.1% 76
Palestinian Territories Palestinian Territories 0.078 +340% 78
Qatar Qatar 0.717 -898% 49
Romania Romania 0.299 -42.6% 65
Russia Russia 0.00776 -98.5% 84
Saudi Arabia Saudi Arabia 1.78 +25.2% 21
Singapore Singapore 10.1 +31% 3
Solomon Islands Solomon Islands 3 +677% 13
El Salvador El Salvador 0.814 -711% 44
Suriname Suriname -0.234 -178% 92
Slovakia Slovakia 1.63 -625% 23
Slovenia Slovenia 1.93 +61.1% 17
Sweden Sweden 5.84 -15.4% 6
Thailand Thailand 1.48 -44.1% 25
Tajikistan Tajikistan 0.711 +118% 50
Timor-Leste Timor-Leste 0.239 -107% 68
Trinidad & Tobago Trinidad & Tobago 0.813 -61% 45
Turkey Turkey 0.498 -6.52% 59
Ukraine Ukraine 0.16 +125% 75
Uruguay Uruguay -0.201 -98.1% 91
United States United States 1.3 -20.7% 29
Uzbekistan Uzbekistan 0.0319 +179% 82
St. Vincent & Grenadines St. Vincent & Grenadines -0.024 -28.4% 88
Vietnam Vietnam 0.126 -135% 77
Samoa Samoa 0.192 -421,901% 73
South Africa South Africa -0.333 -55% 94

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'BM.KLT.DINV.WD.GD.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'BM.KLT.DINV.WD.GD.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))