Foreign direct investment, net (BoP, current US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 1,142,726,312 -46.9% 22
Albania Albania -1,453,695,575 +7.03% 68
Argentina Argentina -8,741,212,671 -58.2% 100
Armenia Armenia -75,466,085 -85.7% 38
Antigua & Barbuda Antigua & Barbuda -252,758,909 -18.3% 52
Australia Australia -39,560,149,067 +110% 111
Austria Austria 1,503,040,780 -72.4% 20
Azerbaijan Azerbaijan 511,163,000 -68.5% 24
Belgium Belgium 29,497,212,208 -379% 7
Bangladesh Bangladesh -1,508,392,908 +8.74% 69
Bulgaria Bulgaria -2,466,340,000 -42.7% 78
Bahrain Bahrain -2,427,659,574 -60.3% 76
Bahamas Bahamas -77,610,341 -20.1% 39
Bosnia & Herzegovina Bosnia & Herzegovina -1,048,410,395 +12.2% 62
Belarus Belarus -1,578,705,129 -18.1% 70
Belize Belize -125,269,203 +809% 41
Brazil Brazil -46,751,213,310 +25.4% 112
Brunei Brunei -29,063,019 -152% 32
Bhutan Bhutan -22,778,262 +91.2% 31
Canada Canada 27,783,990,499 -40.5% 8
Switzerland Switzerland 77,315,997,225 -29.8% 3
Chile Chile -8,929,504,285 -7.1% 102
China China 153,687,573,951 -11.8% 2
Colombia Colombia -9,623,205,709 -38% 103
Cape Verde Cape Verde -87,202,866 -42.4% 40
Costa Rica Costa Rica -4,275,037,259 +15.5% 88
Cyprus Cyprus -5,579,767,747 -54.4% 92
Czechia Czechia -1,872,787,885 -45.6% 72
Germany Germany 32,564,762,200 +25.9% 6
Djibouti Djibouti -67,819,948 -50.5% 34
Dominica Dominica -36,377,088 -22.9% 33
Denmark Denmark 13,097,627,142 +110% 12
Dominican Republic Dominican Republic -4,523,200,000 +3.03% 89
Ecuador Ecuador -232,114,172 -51.1% 49
Spain Spain 19,921,319,178 -708% 11
Estonia Estonia -210,021,997 -93.3% 46
Finland Finland 3,584,762,780 -591% 18
France France -8,476,049,387 -128% 99
United Kingdom United Kingdom 64,801,535,028 +295% 4
Georgia Georgia -905,907,582 -43.9% 60
Gambia Gambia -232,357,064 +13% 50
Greece Greece -4,660,779,369 +594% 90
Grenada Grenada -223,011,683 +0.54% 47
Guatemala Guatemala -1,003,001,490 +0.704% 61
Hong Kong SAR China Hong Kong SAR China -38,925,262,501 +50.9% 110
Honduras Honduras -620,111,972 -27.6% 56
Croatia Croatia -1,877,761,691 -4.91% 73
Hungary Hungary -15,584,385,847 +584% 107
Indonesia Indonesia -14,851,819,437 +3.01% 106
India India -3,840,512,082 -73% 86
Iceland Iceland -69,048,385 -94.7% 35
Israel Israel -6,330,800,000 -23% 96
Italy Italy 12,295,104,563 -207% 13
Jamaica Jamaica -163,531,495 -57% 43
Japan Japan 191,046,455,351 +9.01% 1
Kazakhstan Kazakhstan -1,209,811,102 -56.5% 65
Cambodia Cambodia -4,222,818,310 +10.9% 87
St. Kitts & Nevis St. Kitts & Nevis -19,466,205 -38.9% 30
South Korea South Korea 33,363,000,000 +154% 5
Kuwait Kuwait 9,708,694,798 +6.85% 14
St. Lucia St. Lucia -187,496,461 +22.2% 44
Lesotho Lesotho 12,572,108 -51% 28
Lithuania Lithuania -3,439,469,848 +141% 82
Luxembourg Luxembourg 25,520,673,997 -62% 10
Latvia Latvia -1,062,847,222 +58.6% 63
Moldova Moldova -243,792,854 -28.6% 51
Maldives Maldives -806,204,044 +5.13% 59
Mexico Mexico -31,136,136,421 +4.17% 109
North Macedonia North Macedonia -1,175,312,723 +123% 64
Malta Malta -11,612,796,582 +980% 105
Montenegro Montenegro -531,703,988 +13.5% 54
Mozambique Mozambique -3,552,735,848 +41.6% 84
Malaysia Malaysia -2,554,721,616 -5,552% 80
Namibia Namibia -2,019,872,268 -22.4% 74
Nigeria Nigeria -672,356,993 -58.4% 58
Nicaragua Nicaragua -1,278,500,000 +19.3% 67
Netherlands Netherlands 26,294,799,663 -212% 9
Norway Norway -7,080,352,865 +104% 98
Nepal Nepal -72,719,828 -2.81% 36
New Zealand New Zealand -1,637,357,196 -57.2% 71
Pakistan Pakistan -2,484,000,000 +23.2% 79
Panama Panama -2,375,883,191 +71.4% 75
Peru Peru -5,625,860,695 +96.5% 93
Philippines Philippines -6,058,204,033 +12.2% 94
Poland Poland -10,692,000,000 -45.3% 104
Portugal Portugal -6,472,214,696 +11.7% 97
Paraguay Paraguay -335,122,088 +3.46% 53
Palestinian Territories Palestinian Territories -151,487,835 +50.9% 42
Qatar Qatar 1,102,747,253 +290% 23
Romania Romania -6,206,049,640 -9.8% 95
Russia Russia 8,344,750,000 -59.8% 16
Saudi Arabia Saudi Arabia 6,308,211,620 -216% 17
Singapore Singapore -96,683,787,762 +3.35% 113
Solomon Islands Solomon Islands 19,910,801 -127% 26
El Salvador El Salvador -636,071,996 -7.55% 57
Suriname Suriname 26,504,991 -58.2% 25
Slovakia Slovakia -1,272,768,800 +1,347% 66
Slovenia Slovenia -551,347,152 -10.9% 55
Sweden Sweden 8,957,021,406 -60.1% 15
Thailand Thailand -2,429,233,515 -134% 77
Tajikistan Tajikistan -190,288,018 +89.3% 45
Timor-Leste Timor-Leste -227,705,779 +73.2% 48
Tonga Tonga 13,333,126 -452% 27
Trinidad & Tobago Trinidad & Tobago 1,255,394,919 -39.8% 21
Turkey Turkey -4,661,000,000 -0.703% 91
Ukraine Ukraine -3,491,000,000 -21.4% 83
Uruguay Uruguay 2,377,725,683 -184% 19
United States United States -8,918,000,000 -108% 101
Uzbekistan Uzbekistan -2,799,430,876 +30.5% 81
St. Vincent & Grenadines St. Vincent & Grenadines -74,046,902 -0.429% 37
Vietnam Vietnam -19,570,000,000 -2.39% 108
Samoa Samoa -1,691,134 -29.4% 29
South Africa South Africa -3,755,876,264 -39.9% 85

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'BN.KLT.DINV.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'BN.KLT.DINV.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))