Final consumption expenditure (% of GDP)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 61.5 -0.047% 123
Albania Albania 82.4 +0.178% 48
Argentina Argentina 83.1 +0.967% 45
Armenia Armenia 77.3 -2.82% 76
Australia Australia 73.5 +2.55% 96
Austria Austria 74.7 +2.73% 90
Azerbaijan Azerbaijan 69.8 +2.95% 106
Belgium Belgium 76 +0.997% 81
Benin Benin 67.9 -3.18% 110
Burkina Faso Burkina Faso 79.4 -6.15% 63
Bangladesh Bangladesh 76 +2.43% 80
Bulgaria Bulgaria 77.3 +1.54% 74
Bahamas Bahamas 77.2 +0.917% 77
Bosnia & Herzegovina Bosnia & Herzegovina 88.6 +1.32% 31
Belarus Belarus 75.8 +5.6% 82
Bermuda Bermuda 56.6 -0.38% 125
Brazil Brazil 82.6 +0.763% 47
Brunei Brunei 51.5 +2.13% 127
Botswana Botswana 77.4 +7.24% 73
Central African Republic Central African Republic 104 -1.3% 6
Canada Canada 77 +1.21% 78
Switzerland Switzerland 62.8 +0.196% 119
Chile Chile 73.2 -3.39% 97
Côte d’Ivoire Côte d’Ivoire 75 -3.11% 87
Cameroon Cameroon 85 +0.663% 38
Congo - Kinshasa Congo - Kinshasa 70.8 +0.0982% 104
Congo - Brazzaville Congo - Brazzaville 60.8 +6.25% 124
Colombia Colombia 87.9 -0.487% 32
Comoros Comoros 113 -0.378% 3
Cape Verde Cape Verde 95.4 -3.21% 17
Costa Rica Costa Rica 78.6 -0.99% 68
Cyprus Cyprus 77.5 -1.07% 72
Czechia Czechia 67.4 +0.615% 112
Germany Germany 75.1 +1.04% 86
Djibouti Djibouti 91.8 +4.61% 26
Denmark Denmark 67.6 -2.13% 111
Dominican Republic Dominican Republic 79.2 -0.167% 66
Ecuador Ecuador 78.2 -1.33% 70
Egypt Egypt 93.9 +9.45% 21
Spain Spain 75.2 +0.235% 85
Estonia Estonia 74.3 +0.278% 93
Ethiopia Ethiopia 85.7 +0.552% 36
Finland Finland 77.3 +0.201% 75
France France 78.8 -0.0556% 67
Gabon Gabon 45.8 +1.53% 128
United Kingdom United Kingdom 83.1 -0.746% 46
Georgia Georgia 84.8 +1.4% 40
Ghana Ghana 88.9 -2.26% 30
Guinea Guinea 80.8 -3.93% 57
Gambia Gambia 91.7 -1.76% 27
Guinea-Bissau Guinea-Bissau 94.8 -0.527% 18
Equatorial Guinea Equatorial Guinea 81.3 +3.02% 56
Greece Greece 87.2 -0.942% 33
Guatemala Guatemala 98.9 +0.269% 13
Hong Kong SAR China Hong Kong SAR China 80.2 -3.69% 59
Honduras Honduras 102 -0.342% 8
Croatia Croatia 79.6 +1.35% 61
Haiti Haiti 106 -0.83% 4
Hungary Hungary 70.8 +1.85% 103
Indonesia Indonesia 63.1 +2.02% 118
India India 71.6 +1.61% 100
Ireland Ireland 41.1 +1.68% 131
Iran Iran 63.4 +0.366% 117
Iraq Iraq 61.5 +7.36% 122
Iceland Iceland 74.6 +0.32% 91
Israel Israel 74.1 +4.27% 95
Italy Italy 75.4 -0.38% 84
Kenya Kenya 87 -2.1% 34
Cambodia Cambodia 65.6 -1.22% 115
Libya Libya 69.4 +2.56% 107
Sri Lanka Sri Lanka 75.7 -2.46% 83
Lithuania Lithuania 74.4 +0.332% 92
Luxembourg Luxembourg 52.1 +1.02% 126
Latvia Latvia 81.4 +2.87% 54
Macao SAR China Macao SAR China 41.2 -6.12% 130
Morocco Morocco 79.3 -0.248% 65
Moldova Moldova 105 +0.987% 5
Madagascar Madagascar 85.1 -2.41% 37
Mexico Mexico 81.5 +0.652% 53
North Macedonia North Macedonia 84.7 +1.56% 41
Mali Mali 85 -0.636% 39
Malta Malta 63.8 +0.583% 116
Montenegro Montenegro 94.1 +3.4% 20
Mongolia Mongolia 66.1 +14.9% 114
Mozambique Mozambique 86.1 -9.57% 35
Mauritius Mauritius 83.3 -1.02% 44
Malaysia Malaysia 72.8 +0.517% 98
Namibia Namibia 101 +5.47% 10
Niger Niger 71 -8.27% 101
Nicaragua Nicaragua 92.9 +1.92% 25
Netherlands Netherlands 68.6 -0.37% 108
Norway Norway 62.1 +3% 120
Nepal Nepal 93.8 +1.08% 22
Pakistan Pakistan 93.7 +0.128% 23
Peru Peru 75 -3.04% 88
Philippines Philippines 90.7 -0.095% 29
Poland Poland 78.3 +2.28% 69
Puerto Rico Puerto Rico 84.2 -1.53% 42
Portugal Portugal 78.1 -0.352% 71
Paraguay Paraguay 79.6 +1.89% 62
Palestinian Territories Palestinian Territories 116 -2.53% 2
Romania Romania 81.8 +3.53% 52
Russia Russia 67.9 +1.05% 109
Rwanda Rwanda 81.9 -9.78% 50
Saudi Arabia Saudi Arabia 66.3 +2.89% 113
Sudan Sudan 97.2 -0.899% 15
Senegal Senegal 82.2 -1.27% 49
Singapore Singapore 42.1 +1.19% 129
Sierra Leone Sierra Leone 93.1 +1.47% 24
El Salvador El Salvador 98.8 +0.568% 14
Somalia Somalia 132 +0.586% 1
Serbia Serbia 80.5 +0.984% 58
Slovakia Slovakia 79.7 +1.34% 60
Slovenia Slovenia 72.3 +1.25% 99
Sweden Sweden 71 -0.19% 102
Seychelles Seychelles 101 +7.95% 9
Chad Chad 70 -3.23% 105
Togo Togo 91.4 +0.831% 28
Thailand Thailand 74.9 +1.1% 89
Tunisia Tunisia 94.8 -3.1% 19
Turkey Turkey 74.2 +2.36% 94
Tanzania Tanzania 62.1 -1.26% 121
Uganda Uganda 76.2 -6.09% 79
Ukraine Ukraine 100 -2.48% 11
Uruguay Uruguay 79.3 +0.318% 64
United States United States 81.4 +0.0186% 55
Uzbekistan Uzbekistan 81.9 -1.25% 51
Samoa Samoa 98.9 -6.53% 12
Kosovo Kosovo 96.6 -0.107% 16
South Africa South Africa 84.1 +0.398% 43
Zimbabwe Zimbabwe 104 +13.8% 7

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NE.CON.TOTL.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NE.CON.TOTL.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))