F-gases emissions from Industrial Processes (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 0.88 +7.49% 85
Angola Angola 0.606 +7.39% 98
Albania Albania 0.231 +7.19% 128
United Arab Emirates United Arab Emirates 22.8 +6.94% 8
Argentina Argentina 16 +6.96% 18
Armenia Armenia 0.358 +5.32% 116
Antigua & Barbuda Antigua & Barbuda 0.0005 0% 148
Australia Australia 12.3 +2.84% 21
Austria Austria 1.67 -5.18% 67
Azerbaijan Azerbaijan 1.82 +4.71% 64
Burundi Burundi 0.267 +7.48% 121
Belgium Belgium 2.15 -7.03% 56
Benin Benin 0.889 +7.5% 83
Burkina Faso Burkina Faso 1.08 +7.5% 78
Bangladesh Bangladesh 2.71 +7.5% 51
Bulgaria Bulgaria 1.23 +4.62% 76
Bahrain Bahrain 2.1 +6.91% 59
Bosnia & Herzegovina Bosnia & Herzegovina 0.675 +3.45% 94
Belarus Belarus 0.0698 +1.75% 137
Bolivia Bolivia 0.0427 +4.66% 139
Brazil Brazil 16.7 +3.94% 14
Brunei Brunei 0.256 +6.62% 124
Botswana Botswana 0.411 +7.51% 112
Central African Republic Central African Republic 0.448 +7.51% 107
Canada Canada 16.5 -2.92% 16
Switzerland Switzerland 1.28 -2.9% 72
Chile Chile 10.4 +7.98% 25
China China 482 +4.49% 1
Côte d’Ivoire Côte d’Ivoire 2.38 +7.5% 53
Cameroon Cameroon 3.49 +7.21% 43
Congo - Kinshasa Congo - Kinshasa 2.47 +7.5% 52
Congo - Brazzaville Congo - Brazzaville 0.38 +7.5% 115
Colombia Colombia 8.59 +7.41% 28
Comoros Comoros 0.0001 0% 149
Costa Rica Costa Rica 0.53 +7.46% 104
Cuba Cuba 0.645 +7.32% 97
Cyprus Cyprus 0.426 +3.15% 111
Czechia Czechia 3.89 -0.903% 41
Germany Germany 9.79 -9.23% 27
Denmark Denmark 0.308 -9.66% 119
Dominican Republic Dominican Republic 1.91 +7.5% 63
Algeria Algeria 3.02 +6.45% 47
Ecuador Ecuador 0.882 +7.45% 84
Egypt Egypt 17 +6.74% 12
Spain Spain 4.19 -7.91% 40
Estonia Estonia 0.182 -5.84% 132
Ethiopia Ethiopia 0.0007 0% 147
Finland Finland 0.754 -7.61% 89
Fiji Fiji 0.214 +7.53% 130
France France 7.94 -13.8% 31
Gabon Gabon 1.13 +7.5% 77
United Kingdom United Kingdom 10.5 -6.61% 24
Georgia Georgia 0.451 +5.25% 106
Ghana Ghana 2.15 +7.48% 57
Guinea Guinea 0.844 +7.5% 86
Equatorial Guinea Equatorial Guinea 0.236 +7.48% 127
Greece Greece 4.39 -5.31% 38
Grenada Grenada 0.0037 +2.78% 144
Guatemala Guatemala 0.343 +6.72% 117
Hong Kong SAR China Hong Kong SAR China 0.226 +2.82% 129
Honduras Honduras 0.743 +7.49% 91
Croatia Croatia 1.92 +6.37% 61
Hungary Hungary 2.23 +1.29% 55
Indonesia Indonesia 16.8 +7% 13
India India 68.7 +5.3% 3
Ireland Ireland 0.724 -5.38% 93
Iran Iran 18.9 +6.34% 11
Iraq Iraq 4.23 +7.3% 39
Iceland Iceland 0.256 -5.94% 123
Israel Israel 6.29 +4.62% 33
Italy Italy 14.8 -5.04% 19
Jamaica Jamaica 0.173 +4.65% 133
Jordan Jordan 3.13 +7.42% 46
Japan Japan 23.3 +1.57% 7
Kazakhstan Kazakhstan 3.66 +5.85% 42
Kenya Kenya 0.149 +4.78% 135
Kyrgyzstan Kyrgyzstan 0.0019 0% 146
Cambodia Cambodia 0.559 +7.49% 102
St. Kitts & Nevis St. Kitts & Nevis 0.0001 0% 149
South Korea South Korea 21.5 +4.21% 10
Kuwait Kuwait 16.5 +7.24% 15
Lebanon Lebanon 2.75 +7.5% 50
Liberia Liberia 0.0051 0% 143
Libya Libya 5 +6.97% 37
St. Lucia St. Lucia 0.08 +4.85% 136
Sri Lanka Sri Lanka 0.517 +7.5% 105
Lithuania Lithuania 0.598 -0.928% 100
Luxembourg Luxembourg 0.0499 -5.31% 138
Latvia Latvia 0.434 +0.812% 109
Morocco Morocco 1.92 +7.5% 62
Moldova Moldova 0.266 +4.85% 122
Madagascar Madagascar 0.931 +7.5% 81
Mexico Mexico 21.8 +5.46% 9
North Macedonia North Macedonia 0.762 +4.71% 88
Mali Mali 0.559 +7.49% 102
Malta Malta 0.16 -1.6% 134
Myanmar (Burma) Myanmar (Burma) 0.552 +4.77% 103
Mozambique Mozambique 0.428 +5.63% 110
Mauritania Mauritania 0.764 +7.5% 87
Mauritius Mauritius 1.27 +4.75% 74
Malawi Malawi 0.404 +7.51% 114
Malaysia Malaysia 2.38 +5.47% 54
Namibia Namibia 0.312 +7.48% 118
Niger Niger 0.597 +7.49% 101
Nigeria Nigeria 13.6 +7.24% 20
Nicaragua Nicaragua 0.252 +7.5% 125
Netherlands Netherlands 1.26 -0.578% 75
Norway Norway 1.28 -3.93% 73
New Zealand New Zealand 1.56 +2.34% 68
Oman Oman 1.31 +6.68% 71
Pakistan Pakistan 10.9 +6.8% 23
Panama Panama 0.927 +7.5% 82
Peru Peru 1.03 +7.31% 79
Philippines Philippines 6.74 +7% 32
Papua New Guinea Papua New Guinea 0.0274 0% 141
Poland Poland 5.02 -2.73% 36
North Korea North Korea 3 +7.25% 48
Portugal Portugal 3.3 +0.46% 44
Paraguay Paraguay 0.673 +7.5% 95
Qatar Qatar 3.27 +6.81% 45
Romania Romania 2.92 +1.07% 49
Russia Russia 59 +4.48% 5
Rwanda Rwanda 0.0271 0% 142
Saudi Arabia Saudi Arabia 59.1 +7.16% 4
Sudan Sudan 1.97 +7.5% 60
Senegal Senegal 1.35 +7.5% 70
Singapore Singapore 11.2 +6.92% 22
Sierra Leone Sierra Leone 0.0022 0% 145
El Salvador El Salvador 0.438 +7.48% 108
Somalia Somalia 1.69 +7.5% 66
Suriname Suriname 0 150
Slovakia Slovakia 0.742 -0.39% 92
Slovenia Slovenia 0.411 -3.57% 113
Sweden Sweden 0.933 -4.24% 80
Syria Syria 5.04 +7.5% 35
Chad Chad 0.602 +7.51% 99
Togo Togo 0.745 +7.5% 90
Thailand Thailand 36.7 +7.22% 6
Tajikistan Tajikistan 0.0392 -48.5% 140
Turkmenistan Turkmenistan 0.272 +6.96% 120
Trinidad & Tobago Trinidad & Tobago 1.72 +7.5% 65
Tunisia Tunisia 1.52 +7.5% 69
Turkey Turkey 8.25 +9.05% 30
Ukraine Ukraine 2.14 +6.14% 58
Uruguay Uruguay 0.203 +5.5% 131
United States United States 216 +2.64% 2
Uzbekistan Uzbekistan 0.251 +4.2% 126
St. Vincent & Grenadines St. Vincent & Grenadines 0.0001 0% 149
Venezuela Venezuela 8.45 +6.98% 29
Vietnam Vietnam 10.1 +8.55% 26
Yemen Yemen 5.91 +7.5% 34
South Africa South Africa 16.3 +6.68% 17
Zambia Zambia 0.0001 0% 149
Zimbabwe Zimbabwe 0.665 +7.5% 96

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.FGAS.IP.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.FGAS.IP.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))