External health expenditure (% of current health expenditure)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 21.3 +9.92% 38
Angola Angola 4.68 +1.03% 79
Albania Albania 3.45 +534% 84
United Arab Emirates United Arab Emirates 0 146
Argentina Argentina 1.25 +2.95% 100
Armenia Armenia 0.512 -42.3% 113
Antigua & Barbuda Antigua & Barbuda 0.152 +27.5% 130
Australia Australia 0 146
Azerbaijan Azerbaijan 2.91 +693% 88
Burundi Burundi 53.2 +12.4% 5
Belgium Belgium 0.0122 140
Benin Benin 32 -0.232% 22
Burkina Faso Burkina Faso 20.9 +15.3% 40
Bangladesh Bangladesh 18.5 +143% 45
Bahrain Bahrain 0 146
Bahamas Bahamas 0.453 -4.96% 116
Bosnia & Herzegovina Bosnia & Herzegovina 2.91 +338% 87
Belarus Belarus 0.161 -22% 129
Belize Belize 4.57 +57.3% 80
Bolivia Bolivia 4.92 +238% 78
Brazil Brazil 0.0822 -37.8% 131
Barbados Barbados 0.672 +0.684% 109
Brunei Brunei 0 146
Bhutan Bhutan 15 +54.5% 55
Botswana Botswana 6.34 +18.1% 75
Central African Republic Central African Republic 35.6 -0.588% 19
Canada Canada 0 146
Switzerland Switzerland 0 146
Chile Chile 0 146
China China 0.0486 +21,163% 135
Côte d’Ivoire Côte d’Ivoire 18 +34.9% 49
Cameroon Cameroon 14.4 -4.46% 56
Congo - Kinshasa Congo - Kinshasa 38.6 +2.97% 16
Congo - Brazzaville Congo - Brazzaville 15.1 +122% 54
Comoros Comoros 42.8 +68% 12
Cape Verde Cape Verde 8.28 +161% 68
Costa Rica Costa Rica 0.0301 -35.3% 138
Cuba Cuba 0.0345 +176% 137
Cyprus Cyprus 1.17 +29.6% 101
Djibouti Djibouti 25.8 -42.1% 29
Dominica Dominica 0.444 -96.1% 117
Denmark Denmark 0 146
Dominican Republic Dominican Republic 5.33 +249% 76
Algeria Algeria 0.464 -24.1% 114
Ecuador Ecuador 0.321 -25.5% 121
Egypt Egypt 1.52 +141% 96
Eritrea Eritrea 22.5 -22.8% 35
Estonia Estonia 0.0107 -21% 141
Ethiopia Ethiopia 25.3 -10.5% 30
Finland Finland 0 146
Fiji Fiji 6.91 +2.49% 72
Micronesia (Federated States of) Micronesia (Federated States of) 77.2 -3.52% 1
Gabon Gabon 3.55 -10% 82
United Kingdom United Kingdom 0.00993 +8.58% 143
Georgia Georgia 0.431 -34.2% 118
Ghana Ghana 15.8 +6.85% 53
Guinea Guinea 20.7 -8.58% 41
Gambia Gambia 24.2 +45% 32
Guinea-Bissau Guinea-Bissau 18.2 -22.1% 47
Equatorial Guinea Equatorial Guinea 0.827 +90% 107
Greece Greece 0.213 +60.9% 124
Grenada Grenada 1.85 -47.4% 93
Guatemala Guatemala 2.04 -12.3% 91
Guyana Guyana 3.25 +173% 85
Honduras Honduras 3.52 -29.3% 83
Croatia Croatia 0.00888 -15.3% 144
Haiti Haiti 31 -12.5% 23
Hungary Hungary 0 146
Indonesia Indonesia 0.985 -51.8% 105
India India 1.17 +15.5% 102
Iran Iran 0.427 +76.3% 119
Iraq Iraq 1.27 +70% 98
Iceland Iceland 0 146
Israel Israel 0.876 +67.4% 106
Jamaica Jamaica 1.27 -7.46% 99
Jordan Jordan 6.91 -17.1% 73
Japan Japan 0 146
Kazakhstan Kazakhstan 0.239 +159% 123
Kenya Kenya 18.4 -0.587% 46
Kyrgyzstan Kyrgyzstan 7.85 +39.4% 69
Cambodia Cambodia 9.34 -35.1% 65
Kiribati Kiribati 15.8 -28.3% 52
St. Kitts & Nevis St. Kitts & Nevis 0 146
South Korea South Korea 0 146
Kuwait Kuwait 0 146
Laos Laos 36.3 -4.53% 18
Lebanon Lebanon 7.3 -30.1% 70
Liberia Liberia 19.9 -5.32% 43
Libya Libya 1.82 +7.28% 94
St. Lucia St. Lucia 13.4 -9.26% 59
Sri Lanka Sri Lanka 14.4 +227% 57
Lesotho Lesotho 36.3 -17.5% 17
Lithuania Lithuania 0.637 +29.9% 110
Luxembourg Luxembourg 1.11 -2.26% 104
Latvia Latvia 0.181 +33.8% 127
Morocco Morocco 3.12 -17.7% 86
Moldova Moldova 2.57 -26.1% 90
Madagascar Madagascar 32.8 -18.9% 20
Maldives Maldives 2.85 -77.7% 89
Mexico Mexico 0 -100% 146
Marshall Islands Marshall Islands 60.1 +7.07% 3
Mali Mali 8.68 +6.23% 67
Malta Malta 0 146
Myanmar (Burma) Myanmar (Burma) 13.1 +30.2% 61
Mongolia Mongolia 24.5 +152% 31
Mozambique Mozambique 54.2 -5.38% 4
Mauritania Mauritania 17.5 +87.9% 51
Mauritius Mauritius 0.618 -53.6% 112
Malawi Malawi 64.7 +7.88% 2
Malaysia Malaysia 0.00429 +1.17% 145
Namibia Namibia 8.92 +10.3% 66
Niger Niger 18.2 +27% 48
Nigeria Nigeria 6.76 -14% 74
Nicaragua Nicaragua 5.16 +19.4% 77
Netherlands Netherlands 0.0103 +25% 142
Norway Norway 0 146
Nepal Nepal 10.3 -18.8% 64
Nauru Nauru 11.2 -41.3% 63
Oman Oman 0 146
Pakistan Pakistan 13.2 +31.1% 60
Panama Panama 0.412 -62% 120
Peru Peru 0.206 -7.78% 126
Philippines Philippines 0.311 -93.9% 122
Palau Palau 21.3 +8.12% 36
Papua New Guinea Papua New Guinea 32.2 -18.7% 21
Poland Poland 0.0719 +29% 134
Portugal Portugal 0.0786 -18.8% 132
Paraguay Paraguay 0.0126 -95.4% 139
Palestinian Territories Palestinian Territories 13.9 -2.98% 58
Qatar Qatar 0 146
Romania Romania 0 -100% 146
Rwanda Rwanda 42.9 +19.3% 11
Saudi Arabia Saudi Arabia 0 146
Sudan Sudan 17.7 +70% 50
Senegal Senegal 21.2 +14.5% 39
Singapore Singapore 0 146
Solomon Islands Solomon Islands 27.4 +3.05% 27
Sierra Leone Sierra Leone 28 +9.11% 25
El Salvador El Salvador 1.14 +27.1% 103
Somalia Somalia 50.4 +9.26% 6
South Sudan South Sudan 49.1 +5.37% 9
São Tomé & Príncipe São Tomé & Príncipe 30.9 -29.3% 24
Suriname Suriname 1.47 -40.3% 97
Slovenia Slovenia 0.168 -23.7% 128
Eswatini Eswatini 28 +24.4% 26
Seychelles Seychelles 0 146
Syria Syria 20.4 +35.8% 42
Chad Chad 18.7 +67.3% 44
Togo Togo 21.3 +31.8% 37
Thailand Thailand 0.0725 -18% 133
Tajikistan Tajikistan 11.3 -2.86% 62
Turkmenistan Turkmenistan 0.625 +237% 111
Timor-Leste Timor-Leste 22.6 -26.4% 34
Tonga Tonga 45.7 -0.906% 10
Trinidad & Tobago Trinidad & Tobago 0.0442 -16.2% 136
Tunisia Tunisia 4.38 +120% 81
Tuvalu Tuvalu 27.1 -43.2% 28
Tanzania Tanzania 38.7 -16.5% 15
Uganda Uganda 41.6 -16.9% 13
Uruguay Uruguay 0 -100% 146
United States United States 0 146
Uzbekistan Uzbekistan 0.212 +738% 125
St. Vincent & Grenadines St. Vincent & Grenadines 0.461 -86.3% 115
Venezuela Venezuela 0.705 +48.7% 108
Vietnam Vietnam 1.59 +33.4% 95
Vanuatu Vanuatu 49.3 -21.8% 8
Samoa Samoa 7.14 -44.6% 71
Yemen Yemen 23.9 +8.39% 33
South Africa South Africa 1.9 +40.7% 92
Zambia Zambia 41.4 -16.3% 14
Zimbabwe Zimbabwe 50 +10.9% 7

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.XPD.EHEX.CH.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.XPD.EHEX.CH.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))