External debt stocks, total (DOD, current US$)

Source: worldbank.org, 01.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 3,428,116,976 +1.03% 90
Angola Angola 57,031,749,206 -5.65% 26
Albania Albania 11,363,954,733 +9.06% 65
Argentina Argentina 266,167,259,703 -0.275% 7
Armenia Armenia 15,838,832,193 -0.579% 52
Azerbaijan Azerbaijan 14,532,679,536 -4.87% 57
Burundi Burundi 1,042,821,518 +9.19% 108
Benin Benin 12,482,753,039 +16.3% 62
Burkina Faso Burkina Faso 10,397,389,534 +5.55% 68
Bangladesh Bangladesh 101,447,458,740 +4.56% 18
Bosnia & Herzegovina Bosnia & Herzegovina 14,010,190,698 +4.67% 59
Belarus Belarus 36,704,544,070 -7.91% 35
Belize Belize 1,509,919,205 +2.85% 103
Bolivia Bolivia 16,306,937,351 +2.36% 51
Brazil Brazil 607,115,489,833 +4.77% 3
Bhutan Bhutan 3,269,070,740 +3.44% 93
Botswana Botswana 2,078,815,547 +3.8% 100
Central African Republic Central African Republic 1,020,876,080 +0.577% 109
China China 2,420,210,835,504 -1.14% 1
Côte d’Ivoire Côte d’Ivoire 36,547,882,004 +15% 36
Cameroon Cameroon 15,331,905,271 +1.47% 54
Congo - Kinshasa Congo - Kinshasa 11,066,891,639 +13.9% 66
Congo - Brazzaville Congo - Brazzaville 7,779,155,931 -1.05% 73
Colombia Colombia 197,505,176,816 +7.11% 8
Comoros Comoros 381,715,460 +5.42% 118
Cape Verde Cape Verde 2,451,446,195 +1.7% 98
Costa Rica Costa Rica 39,025,118,295 +0.886% 34
Djibouti Djibouti 3,428,662,710 +8.16% 89
Dominica Dominica 598,135,919 -0.118% 113
Dominican Republic Dominican Republic 52,256,628,609 +8.32% 27
Algeria Algeria 7,315,265,960 +2.61% 75
Ecuador Ecuador 60,563,619,919 -0.198% 24
Egypt Egypt 168,062,300,504 +3.05% 11
Eritrea Eritrea 725,941,139 -0.16% 111
Ethiopia Ethiopia 33,290,272,173 +8.66% 39
Fiji Fiji 3,347,681,716 +12% 92
Gabon Gabon 7,588,099,792 -5.12% 74
Georgia Georgia 24,467,544,298 +2.02% 43
Ghana Ghana 43,741,980,956 +2.51% 30
Guinea Guinea 5,164,136,104 +5.31% 81
Gambia Gambia 1,325,048,605 +12.3% 104
Guinea-Bissau Guinea-Bissau 1,128,036,823 +5.17% 106
Grenada Grenada 727,141,919 +3.91% 110
Guatemala Guatemala 25,364,845,252 +0.377% 42
Guyana Guyana 2,952,573,717 +42.6% 96
Honduras Honduras 12,820,575,275 +1.44% 60
Haiti Haiti 2,637,609,832 +2.97% 97
Indonesia Indonesia 406,054,424,835 +2.53% 6
India India 646,787,065,275 +5.08% 2
Iran Iran 9,900,872,535 +4.66% 71
Iraq Iraq 20,331,392,379 -10.5% 48
Jamaica Jamaica 15,349,418,849 -2.85% 53
Jordan Jordan 44,629,840,155 +8.25% 29
Kazakhstan Kazakhstan 163,154,522,933 +1.35% 13
Kenya Kenya 42,910,026,054 +3.26% 31
Kyrgyzstan Kyrgyzstan 10,115,052,290 +3.79% 69
Cambodia Cambodia 22,533,605,679 +0.266% 46
Laos Laos 20,350,257,787 +6.39% 47
Lebanon Lebanon 66,296,461,063 -1.17% 22
Liberia Liberia 2,078,056,984 +9.14% 101
St. Lucia St. Lucia 1,086,264,196 +19.5% 107
Sri Lanka Sri Lanka 61,705,953,520 +5.09% 23
Lesotho Lesotho 1,775,614,027 -1.87% 102
Morocco Morocco 69,267,283,213 +6.61% 20
Moldova Moldova 10,638,677,756 +9.41% 67
Madagascar Madagascar 6,452,328,515 +8.67% 79
Maldives Maldives 4,000,222,208 +0.186% 86
Mexico Mexico 595,917,670,218 +1.79% 4
North Macedonia North Macedonia 12,614,290,436 +8.37% 61
Mali Mali 6,457,154,422 +3.66% 78
Myanmar (Burma) Myanmar (Burma) 12,162,102,319 -2.99% 63
Montenegro Montenegro 8,616,498,559 -1.36% 72
Mongolia Mongolia 34,321,287,449 +2.6% 38
Mozambique Mozambique 66,847,716,823 +3.83% 21
Mauritania Mauritania 4,603,556,865 +0.383% 83
Mauritius Mauritius 19,252,338,501 +9.06% 50
Malawi Malawi 3,604,446,499 +7.92% 88
Niger Niger 5,612,994,783 +3.4% 80
Nigeria Nigeria 102,481,701,292 -0.6% 17
Nicaragua Nicaragua 15,163,412,737 +1.78% 56
Nepal Nepal 9,968,496,284 +8.54% 70
Pakistan Pakistan 130,847,370,987 +2.46% 15
Peru Peru 90,067,566,772 +1.39% 19
Philippines Philippines 121,402,087,836 +9.14% 16
Papua New Guinea Papua New Guinea 15,320,623,208 -21.9% 55
Paraguay Paraguay 26,135,416,108 +5.45% 41
Rwanda Rwanda 11,383,983,446 +17.5% 64
Sudan Sudan 22,580,569,039 +0.624% 45
Senegal Senegal 39,950,111,017 +23.9% 33
Solomon Islands Solomon Islands 527,817,630 +10.6% 114
Sierra Leone Sierra Leone 2,381,922,454 -0.768% 99
El Salvador El Salvador 22,741,503,455 +6.72% 44
Somalia Somalia 3,022,833,727 -26.1% 95
Serbia Serbia 49,000,132,003 +10.2% 28
São Tomé & Príncipe São Tomé & Príncipe 454,273,049 +7.75% 116
Suriname Suriname 4,047,562,767 -3.51% 85
Eswatini Eswatini 1,240,687,606 -0.574% 105
Syria Syria 4,875,542,720 +0.278% 82
Chad Chad 3,214,041,697 -3.2% 94
Togo Togo 3,375,209,273 +4.83% 91
Thailand Thailand 193,626,206,257 -3.69% 9
Tajikistan Tajikistan 6,872,765,847 +2.22% 77
Turkmenistan Turkmenistan 3,917,747,615 -15.7% 87
Timor-Leste Timor-Leste 307,384,038 +6.11% 119
Tonga Tonga 196,453,499 -6.42% 120
Tunisia Tunisia 41,278,696,730 +0.676% 32
Turkey Turkey 499,842,484,724 +9.16% 5
Tanzania Tanzania 34,597,954,343 +13.9% 37
Uganda Uganda 19,393,466,640 -4.97% 49
Ukraine Ukraine 176,645,481,677 +23.3% 10
Uzbekistan Uzbekistan 59,184,351,624 +20.8% 25
St. Vincent & Grenadines St. Vincent & Grenadines 628,508,651 +13.5% 112
Vietnam Vietnam 141,849,555,321 -3.26% 14
Vanuatu Vanuatu 470,663,727 +1.56% 115
Samoa Samoa 432,494,880 -8.12% 117
Kosovo Kosovo 4,242,269,393 +15.9% 84
Yemen Yemen 7,283,022,249 -0.926% 76
South Africa South Africa 165,786,604,626 -3.46% 12
Zambia Zambia 29,029,302,611 +2.51% 40
Zimbabwe Zimbabwe 14,213,387,011 +2.78% 58

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'DT.DOD.DECT.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'DT.DOD.DECT.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))