External debt stocks (% of GNI)

Source: worldbank.org, 01.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 19.8 -15.2% 103
Angola Angola 74.3 +18.4% 21
Albania Albania 48.9 -12.3% 51
Argentina Argentina 42.1 -2.1% 63
Armenia Armenia 67.6 -19.4% 27
Azerbaijan Azerbaijan 21 +0.96% 100
Burundi Burundi 39.4 +38.3% 72
Benin Benin 64.1 +2.83% 30
Burkina Faso Burkina Faso 53.4 -2.34% 43
Bangladesh Bangladesh 22.3 +9.96% 99
Bosnia & Herzegovina Bosnia & Herzegovina 51.2 -7.36% 48
Belarus Belarus 52.9 -6.15% 45
Belize Belize 51.1 -5.6% 49
Bolivia Bolivia 37.2 -0.254% 76
Brazil Brazil 28.8 -5.67% 90
Botswana Botswana 10.7 +8.69% 110
Central African Republic Central African Republic 37.7 -6.75% 74
China China 13.7 -0.671% 107
Côte d’Ivoire Côte d’Ivoire 48.3 +3.09% 54
Cameroon Cameroon 31.7 -9.24% 85
Congo - Kinshasa Congo - Kinshasa 17.2 +10.4% 106
Congo - Brazzaville Congo - Brazzaville 53.5 -4.09% 42
Colombia Colombia 54.9 +0.589% 40
Comoros Comoros 28.2 -2.87% 92
Cape Verde Cape Verde 97.9 -9.9% 9
Costa Rica Costa Rica 48.5 -19.4% 53
Djibouti Djibouti 85.6 +1.02% 16
Dominica Dominica 91.2 -7.23% 11
Dominican Republic Dominican Republic 45 +1.99% 58
Algeria Algeria 3 -7.34% 113
Ecuador Ecuador 52.1 -1.5% 47
Egypt Egypt 44.4 +25.4% 60
Ethiopia Ethiopia 20.4 -16% 102
Fiji Fiji 65.3 +2.74% 29
Gabon Gabon 41.2 -1.97% 65
Georgia Georgia 86.2 -16.5% 15
Ghana Ghana 58 -0.797% 37
Guinea Guinea 25.5 +1.67% 94
Gambia Gambia 56 +3.23% 38
Guinea-Bissau Guinea-Bissau 55.2 -7.18% 39
Grenada Grenada 58.9 -3.68% 35
Guatemala Guatemala 24.7 -8.36% 97
Guyana Guyana 28.3 +22% 91
Honduras Honduras 40.2 -7.83% 69
Haiti Haiti 13.3 +5.15% 108
Indonesia Indonesia 30.4 -1.54% 86
India India 18.4 -1.14% 105
Iran Iran 2.45 +1.97% 114
Iraq Iraq 8.07 +1.5% 111
Jamaica Jamaica 80.2 -15% 19
Jordan Jordan 88.4 +3.52% 13
Kazakhstan Kazakhstan 69 -14.3% 24
Kenya Kenya 40.4 +9.62% 68
Kyrgyzstan Kyrgyzstan 73.3 -10.7% 22
Cambodia Cambodia 54.5 -6.86% 41
Laos Laos 139 +3.68% 3
Liberia Liberia 52.4 +3.2% 46
St. Lucia St. Lucia 49 +15.7% 50
Sri Lanka Sri Lanka 75.6 -7.04% 20
Lesotho Lesotho 68.9 +7.68% 25
Morocco Morocco 48.7 -3.36% 52
Moldova Moldova 63.3 -5.14% 32
Madagascar Madagascar 41.8 +3.89% 64
Maldives Maldives 68.7 -5.91% 26
Mexico Mexico 34.2 -16.5% 82
North Macedonia North Macedonia 84.3 -3.41% 17
Mali Mali 32.8 -5.28% 83
Myanmar (Burma) Myanmar (Burma) 18.6 -9.46% 104
Montenegro Montenegro 113 -17.6% 7
Mongolia Mongolia 190 -14.6% 2
Mozambique Mozambique 350 -5.16% 1
Mauritania Mauritania 43.2 -10.5% 62
Mauritius Mauritius 128 -2.02% 6
Malawi Malawi 29.2 +5.34% 88
Niger Niger 34.7 -10.2% 81
Nigeria Nigeria 29 +30.8% 89
Nicaragua Nicaragua 89.5 -12.7% 12
Nepal Nepal 24.1 +8.64% 98
Pakistan Pakistan 39.4 +14% 71
Peru Peru 35.5 -8.07% 79
Philippines Philippines 25 -3.69% 95
Papua New Guinea Papua New Guinea 53.2 -19.2% 44
Paraguay Paraguay 62.8 +2.93% 33
Rwanda Rwanda 82.4 +10.8% 18
Sudan Sudan 20.9 -53% 101
Senegal Senegal 134 +11.1% 4
Solomon Islands Solomon Islands 31.8 +4.98% 84
Sierra Leone Sierra Leone 37.5 +10.1% 75
El Salvador El Salvador 71.3 +0.468% 23
Somalia Somalia 27.7 -31.3% 93
Serbia Serbia 63.5 -9.1% 31
São Tomé & Príncipe São Tomé & Príncipe 66.2 -13.4% 28
Suriname Suriname 129 +7.23% 5
Eswatini Eswatini 30 +3.86% 87
Chad Chad 24.8 -8.76% 96
Togo Togo 36.6 -6.56% 78
Thailand Thailand 38.5 -7.89% 73
Tajikistan Tajikistan 45.4 -4.08% 56
Turkmenistan Turkmenistan 6.52 -18.4% 112
Timor-Leste Timor-Leste 12.6 +33.2% 109
Tunisia Tunisia 87.4 -7.03% 14
Turkey Turkey 45.2 -11.4% 57
Tanzania Tanzania 44.6 +9.22% 59
Uganda Uganda 40.6 -11.3% 67
Ukraine Ukraine 96.1 +14.3% 10
Uzbekistan Uzbekistan 58.7 +9.04% 36
St. Vincent & Grenadines St. Vincent & Grenadines 59.4 +2.81% 34
Vietnam Vietnam 34.8 -7.26% 80
Vanuatu Vanuatu 36.7 -6.49% 77
Samoa Samoa 46.8 -19.3% 55
Kosovo Kosovo 39.7 +2.8% 70
South Africa South Africa 44.1 +2.44% 61
Zambia Zambia 110 +6.98% 8
Zimbabwe Zimbabwe 40.8 -5.4% 66

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'DT.DOD.DECT.GN.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'DT.DOD.DECT.GN.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))