External debt stocks, long-term (DOD, current US$)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 1,874,433,293 -0.145% 96
Angola Angola 46,651,516,910 -7.93% 27
Albania Albania 9,585,649,421 +12.7% 62
Argentina Argentina 163,605,136,250 -0.818% 8
Armenia Armenia 12,062,333,251 +1.1% 55
Azerbaijan Azerbaijan 13,210,640,306 -6.09% 53
Burundi Burundi 607,085,975 +4.97% 109
Benin Benin 9,458,471,906 +14.3% 64
Burkina Faso Burkina Faso 9,765,043,223 +4.81% 61
Bangladesh Bangladesh 83,284,235,879 +10.3% 17
Bosnia & Herzegovina Bosnia & Herzegovina 10,189,244,733 +4.89% 59
Belarus Belarus 24,952,537,507 -12% 38
Belize Belize 1,440,022,704 +2.83% 99
Bolivia Bolivia 14,984,901,072 +1.42% 50
Brazil Brazil 508,551,146,192 +2.99% 3
Bhutan Bhutan 3,233,877,816 +3.63% 85
Botswana Botswana 1,457,909,838 -6.71% 98
Central African Republic Central African Republic 442,796,838 +3.01% 112
China China 1,084,231,056,087 -4.45% 1
Côte d’Ivoire Côte d’Ivoire 29,561,955,091 +10.3% 35
Cameroon Cameroon 12,418,492,118 +0.494% 54
Congo - Kinshasa Congo - Kinshasa 6,467,510,547 +16.2% 72
Congo - Brazzaville Congo - Brazzaville 6,875,467,270 -3.72% 70
Colombia Colombia 168,933,403,698 +7.97% 7
Comoros Comoros 320,487,437 +5.7% 117
Cape Verde Cape Verde 1,933,793,921 +0.702% 95
Costa Rica Costa Rica 31,377,966,114 +5.07% 34
Djibouti Djibouti 2,846,358,659 +16.7% 87
Dominica Dominica 378,619,161 +6.13% 114
Dominican Republic Dominican Republic 46,917,295,606 +7.72% 26
Algeria Algeria 1,274,563,508 -1.24% 102
Ecuador Ecuador 49,590,821,905 +0.44% 24
Egypt Egypt 119,259,905,561 +7.35% 12
Eritrea Eritrea 641,297,476 -0.768% 108
Ethiopia Ethiopia 31,914,034,150 +9.87% 33
Fiji Fiji 2,337,596,197 +3.22% 91
Gabon Gabon 6,090,214,800 -1.66% 73
Georgia Georgia 19,238,122,679 +0.779% 44
Ghana Ghana 36,353,558,558 +4.18% 29
Guinea Guinea 4,021,210,042 +6.59% 79
Gambia Gambia 982,634,487 +10.2% 105
Guinea-Bissau Guinea-Bissau 1,018,181,455 +4.29% 104
Grenada Grenada 605,738,922 +7.06% 110
Guatemala Guatemala 24,461,739,265 +1.28% 40
Guyana Guyana 2,541,674,086 +52.4% 89
Honduras Honduras 10,345,182,402 -2.41% 58
Haiti Haiti 2,084,800,488 -1.52% 93
Indonesia Indonesia 342,815,206,785 +0.991% 5
India India 498,265,210,330 +7.01% 4
Iran Iran 1,115,504,480 -0.762% 103
Iraq Iraq 15,698,548,004 -12.5% 48
Jamaica Jamaica 11,120,315,391 -7.39% 56
Jordan Jordan 26,122,608,969 +14.4% 37
Kazakhstan Kazakhstan 141,946,187,973 -0.496% 9
Kenya Kenya 36,295,438,589 +1.94% 30
Kyrgyzstan Kyrgyzstan 8,414,743,560 +3.48% 68
Cambodia Cambodia 17,823,586,872 +1.68% 46
Laos Laos 20,006,050,785 +10.1% 43
Lebanon Lebanon 48,084,690,342 -4.78% 25
Liberia Liberia 1,351,029,051 +17.8% 100
St. Lucia St. Lucia 930,117,382 +26.3% 106
Sri Lanka Sri Lanka 51,602,903,242 +7.95% 22
Lesotho Lesotho 1,595,453,298 -1.12% 97
Morocco Morocco 55,330,533,879 +8.2% 21
Moldova Moldova 6,637,628,437 +5.9% 71
Madagascar Madagascar 4,980,338,748 +12.1% 77
Maldives Maldives 3,835,721,648 +10.3% 80
Mexico Mexico 520,492,250,956 +0.962% 2
North Macedonia North Macedonia 8,934,140,529 +12.2% 65
Mali Mali 5,540,991,605 +4.61% 76
Myanmar (Burma) Myanmar (Burma) 10,487,748,018 -3.18% 57
Montenegro Montenegro 8,269,469,317 -0.741% 69
Mongolia Mongolia 32,028,335,651 +2.99% 32
Mozambique Mozambique 64,843,341,463 +3.63% 20
Mauritania Mauritania 3,749,372,024 -1.93% 81
Mauritius Mauritius 9,496,040,007 +5.46% 63
Malawi Malawi 2,876,075,401 +13% 86
Niger Niger 4,833,771,078 +3.98% 78
Nigeria Nigeria 75,667,394,754 +3.67% 18
Nicaragua Nicaragua 13,457,709,764 +2.86% 52
Nepal Nepal 8,817,681,854 +7.15% 67
Pakistan Pakistan 110,436,967,743 +2.81% 14
Peru Peru 74,774,001,689 -1.34% 19
Philippines Philippines 100,555,010,441 +10.6% 16
Papua New Guinea Papua New Guinea 14,265,408,991 -9.17% 51
Paraguay Paraguay 22,985,461,577 +4.08% 42
Rwanda Rwanda 10,127,366,897 +16.4% 60
Sudan Sudan 15,364,548,060 +0.731% 49
Senegal Senegal 32,825,557,406 +21.5% 31
Solomon Islands Solomon Islands 423,404,833 +20.9% 113
Sierra Leone Sierra Leone 1,344,715,324 -0.163% 101
El Salvador El Salvador 18,951,426,261 +5.44% 45
Somalia Somalia 1,996,933,695 -13.6% 94
Serbia Serbia 45,317,495,692 +14.9% 28
São Tomé & Príncipe São Tomé & Príncipe 370,751,011 +9.32% 115
Suriname Suriname 3,293,605,027 -3.02% 84
Eswatini Eswatini 926,069,589 -4.24% 107
Syria Syria 3,501,530,081 +0.102% 83
Chad Chad 2,215,097,557 -3.27% 92
Togo Togo 2,679,689,484 +9.71% 88
Thailand Thailand 120,419,572,088 -5.44% 11
Tajikistan Tajikistan 5,674,280,260 +1.66% 75
Turkmenistan Turkmenistan 3,517,252,539 -15.2% 82
Timor-Leste Timor-Leste 254,756,411 +3.38% 119
Tonga Tonga 151,362,668 -8.38% 120
Tunisia Tunisia 24,795,860,931 +2.42% 39
Turkey Turkey 318,390,696,397 +5.45% 6
Tanzania Tanzania 28,460,964,290 +15.6% 36
Uganda Uganda 17,000,767,514 -0.881% 47
Ukraine Ukraine 139,131,489,929 +23.5% 10
Uzbekistan Uzbekistan 50,995,848,160 +23.5% 23
St. Vincent & Grenadines St. Vincent & Grenadines 575,628,523 +15% 111
Vietnam Vietnam 104,835,215,346 -1.64% 15
Vanuatu Vanuatu 362,290,706 -3.13% 116
Samoa Samoa 308,627,273 -9.67% 118
Kosovo Kosovo 2,525,228,737 +16.1% 90
Yemen Yemen 5,814,628,864 -1.38% 74
South Africa South Africa 113,666,637,732 -4.03% 13
Zambia Zambia 23,210,616,192 -1.77% 41
Zimbabwe Zimbabwe 8,911,016,023 +4.89% 66

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'DT.DOD.DLXF.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'DT.DOD.DLXF.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))