Export volume index (2015 = 100)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 35.7 -36.4% 183
Afghanistan Afghanistan 114 +10% 95
Angola Angola 70 -0.143% 163
Albania Albania 209 +57.1% 15
Andorra Andorra 209 -4% 16
United Arab Emirates United Arab Emirates 117 +4.67% 88
Argentina Argentina 95.6 -16.7% 135
Armenia Armenia 392 +58% 5
American Samoa American Samoa 50.8 +3.25% 175
Antigua & Barbuda Antigua & Barbuda 40.8 +31.6% 179
Australia Australia 105 -0.853% 118
Austria Austria 99.6 -1.39% 129
Azerbaijan Azerbaijan 140 +35% 55
Burundi Burundi 120 +0.586% 81
Belgium Belgium 102 -6.26% 125
Benin Benin 167 +14.9% 30
Burkina Faso Burkina Faso 130 -4.42% 68
Bangladesh Bangladesh 163 +2.9% 33
Bulgaria Bulgaria 125 -3.63% 74
Bahrain Bahrain 106 -7.49% 116
Bahamas Bahamas 99.6 +13.4% 129
Bosnia & Herzegovina Bosnia & Herzegovina 132 +2.4% 63
Belarus Belarus 116 +8.18% 89
Belize Belize 76.5 -17.2% 157
Bermuda Bermuda 117 +71.2% 87
Bolivia Bolivia 90.3 -18.5% 147
Brazil Brazil 136 +8.8% 57
Barbados Barbados 75 -9.64% 158
Brunei Brunei 109 +8.06% 110
Bhutan Bhutan 69.1 +30.6% 164
Botswana Botswana 86.2 -33.7% 149
Central African Republic Central African Republic 141 -13.1% 51
Canada Canada 109 +5.63% 109
Switzerland Switzerland 102 +2.42% 126
Chile Chile 101 -1.18% 127
China China 140 +3.01% 54
Côte d’Ivoire Côte d’Ivoire 141 +14.4% 52
Cameroon Cameroon 89.8 +5.4% 148
Congo - Kinshasa Congo - Kinshasa 110 +12% 104
Congo - Brazzaville Congo - Brazzaville 67.4 -3.44% 166
Colombia Colombia 94 +1.4% 142
Comoros Comoros 207 -43% 18
Cape Verde Cape Verde 68.4 +17.9% 165
Costa Rica Costa Rica 180 +13.4% 26
Cuba Cuba 43.6 -10.3% 177
Cayman Islands Cayman Islands 37.4 +18.4% 181
Cyprus Cyprus 111 +15.8% 100
Czechia Czechia 109 -2.42% 108
Germany Germany 91.5 -1.82% 145
Djibouti Djibouti 2,903 +3.06% 1
Dominica Dominica 42.2 -28.6% 178
Denmark Denmark 107 +2.6% 115
Dominican Republic Dominican Republic 118 -6.06% 86
Algeria Algeria 136 +45.7% 58
Ecuador Ecuador 122 +4.09% 77
Egypt Egypt 142 -4.12% 49
Eritrea Eritrea 79 -14.3% 155
Spain Spain 100 -3.29% 128
Estonia Estonia 105 -13.2% 117
Ethiopia Ethiopia 96.7 -6.75% 133
Finland Finland 102 -3.78% 124
Fiji Fiji 92.6 -3.04% 143
France France 86.2 -1.71% 149
Faroe Islands Faroe Islands 142 +8.59% 50
Micronesia (Federated States of) Micronesia (Federated States of) 197 -4.23% 20
Gabon Gabon 50.4 -2.14% 176
United Kingdom United Kingdom 99.5 -7.61% 130
Georgia Georgia 207 +11.4% 17
Ghana Ghana 108 -6.4% 111
Gibraltar Gibraltar 218 +131% 11
Guinea Guinea 368 +16.2% 6
Gambia Gambia 186 +596% 24
Guinea-Bissau Guinea-Bissau 60.6 -22.4% 170
Equatorial Guinea Equatorial Guinea 60.1 +24.4% 171
Greece Greece 134 +1.13% 59
Grenada Grenada 129 +20.3% 70
Greenland Greenland 197 +7.07% 21
Guatemala Guatemala 118 -7.53% 86
Guam Guam 37.4 -51.6% 181
Guyana Guyana 607 +33.6% 3
Hong Kong SAR China Hong Kong SAR China 91.1 -9.98% 146
Honduras Honduras 107 -10.2% 114
Croatia Croatia 143 +5.09% 48
Haiti Haiti 94.8 -30.9% 140
Hungary Hungary 113 -1.4% 97
Indonesia Indonesia 122 +8.27% 79
India India 134 +2.84% 60
Ireland Ireland 169 -1.75% 29
Iran Iran 110 +23.5% 105
Iraq Iraq 127 +0.158% 72
Iceland Iceland 113 -2.42% 96
Israel Israel 95.5 -6.92% 136
Italy Italy 95.9 -3.91% 134
Jamaica Jamaica 129 +36.1% 69
Jordan Jordan 164 +5.27% 32
Japan Japan 113 -1.66% 97
Kazakhstan Kazakhstan 103 +9.25% 122
Kenya Kenya 103 -1.53% 121
Kyrgyzstan Kyrgyzstan 175 +51.8% 28
Cambodia Cambodia 246 +2.37% 10
Kiribati Kiribati 143 +125% 47
St. Kitts & Nevis St. Kitts & Nevis 38.7 -14.4% 180
South Korea South Korea 120 +2.05% 83
Kuwait Kuwait 96.7 +2.22% 133
Laos Laos 115 +23.2% 94
Lebanon Lebanon 79.4 -9.67% 154
Liberia Liberia 268 +10.1% 8
Libya Libya 64.7 -20% 168
St. Lucia St. Lucia 35.3 +1.44% 184
Sri Lanka Sri Lanka 130 +2.03% 66
Lesotho Lesotho 78.4 -9.57% 156
Lithuania Lithuania 115 -5.34% 92
Luxembourg Luxembourg 72.9 -3.83% 161
Latvia Latvia 122 -2.64% 78
Macao SAR China Macao SAR China 107 -0.557% 113
Morocco Morocco 148 -0.27% 42
Moldova Moldova 177 +5.92% 27
Madagascar Madagascar 148 -7.43% 40
Maldives Maldives 148 +21.2% 41
Mexico Mexico 121 +3.24% 80
Marshall Islands Marshall Islands 104 -39.2% 120
North Macedonia North Macedonia 163 +6.49% 34
Mali Mali 131 +1.24% 65
Malta Malta 95.4 +3.25% 137
Myanmar (Burma) Myanmar (Burma) 84.1 -5.51% 150
Mongolia Mongolia 217 +70.6% 12
Northern Mariana Islands Northern Mariana Islands 287 +123% 7
Mozambique Mozambique 143 +41.9% 46
Mauritania Mauritania 145 +6.72% 44
Mauritius Mauritius 71.2 -11.8% 162
Malawi Malawi 79.5 +0.126% 153
Malaysia Malaysia 136 -6.97% 56
Namibia Namibia 92.1 -6.97% 144
New Caledonia New Caledonia 118 +1.29% 85
Niger Niger 63.3 -5.8% 169
Nigeria Nigeria 65.6 +9.88% 167
Nicaragua Nicaragua 123 -5.44% 75
Netherlands Netherlands 122 -5.71% 77
Norway Norway 111 +8.53% 103
Nepal Nepal 122 -3.94% 78
Nauru Nauru 595 +11.7% 4
New Zealand New Zealand 103 +2.09% 123
Oman Oman 155 +19.4% 37
Pakistan Pakistan 166 +3.82% 31
Panama Panama 132 +11.8% 61
Peru Peru 145 -0.206% 43
Philippines Philippines 110 -4.44% 106
Palau Palau 25 -27.1% 185
Papua New Guinea Papua New Guinea 89.8 +32.8% 148
Poland Poland 129 -1.46% 71
North Korea North Korea 5.6 +93.1% 186
Portugal Portugal 111 -0.715% 101
Paraguay Paraguay 113 +44.4% 96
Palestinian Territories Palestinian Territories 119 -6.37% 84
French Polynesia French Polynesia 162 +69.5% 35
Qatar Qatar 74.3 +29.9% 159
Romania Romania 116 +0.781% 90
Russia Russia 95.3 -13.3% 138
Rwanda Rwanda 254 +18% 9
Saudi Arabia Saudi Arabia 108 -10.2% 112
Senegal Senegal 141 -1.47% 53
Singapore Singapore 116 -5.55% 91
Solomon Islands Solomon Islands 126 +32.5% 73
Sierra Leone Sierra Leone 206 +30.1% 19
El Salvador El Salvador 94.9 -8.13% 139
Somalia Somalia 73.7 +12.5% 160
Serbia Serbia 186 +8.78% 23
São Tomé & Príncipe São Tomé & Príncipe 152 +5.76% 38
Suriname Suriname 94.2 -23.1% 141
Slovakia Slovakia 103 +2.29% 122
Slovenia Slovenia 144 -0.139% 45
Sweden Sweden 104 -0.478% 119
Eswatini Eswatini 83.5 -7.43% 151
Seychelles Seychelles 123 -1.52% 76
Syria Syria 213 +44.7% 14
Turks & Caicos Islands Turks & Caicos Islands 110 +40.8% 106
Chad Chad 92.1 -2.95% 144
Togo Togo 97.7 +20.3% 132
Thailand Thailand 115 -2.13% 93
Tajikistan Tajikistan 184 +24.8% 25
Turkmenistan Turkmenistan 80.5 +95.4% 152
Timor-Leste Timor-Leste 994 -18.9% 2
Tonga Tonga 57.2 -23.5% 172
Trinidad & Tobago Trinidad & Tobago 52 -12.2% 174
Tunisia Tunisia 111 +3.92% 100
Turkey Turkey 149 0% 39
Tanzania Tanzania 112 +5.07% 98
Uganda Uganda 213 +71.8% 13
Ukraine Ukraine 52.4 -5.24% 173
Uruguay Uruguay 111 -13.2% 102
United States United States 112 +3.33% 99
Uzbekistan Uzbekistan 132 +34.1% 62
St. Vincent & Grenadines St. Vincent & Grenadines 131 -13.4% 64
British Virgin Islands British Virgin Islands 120 -0.746% 82
Vietnam Vietnam 195 -2.89% 22
Vanuatu Vanuatu 130 -2.99% 67
Samoa Samoa 60.6 +13.3% 170
Yemen Yemen 36.4 -58% 182
South Africa South Africa 110 +2.14% 107
Zambia Zambia 99.1 -7.9% 131
Zimbabwe Zimbabwe 159 +8.14% 36

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TX.QTY.MRCH.XD.WD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TX.QTY.MRCH.XD.WD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))