Export value index (2015 = 100)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 41.8 -24.1% 183
Afghanistan Afghanistan 164 +7.69% 72
Angola Angola 115 -25.7% 144
Albania Albania 255 +45.7% 17
Andorra Andorra 245 -3.47% 20
United Arab Emirates United Arab Emirates 162 -5.43% 75
Argentina Argentina 118 -24.5% 142
Armenia Armenia 568 +57% 4
American Samoa American Samoa 109 +3.41% 151
Antigua & Barbuda Antigua & Barbuda 43.9 +31% 182
Australia Australia 198 -10.1% 39
Austria Austria 147 +5.62% 104
Azerbaijan Azerbaijan 207 -11.2% 35
Burundi Burundi 171 -1.27% 63
Belgium Belgium 142 -9.82% 109
Benin Benin 229 +3.02% 25
Burkina Faso Burkina Faso 206 -1.11% 37
Bangladesh Bangladesh 172 +2.02% 61
Bulgaria Bulgaria 188 -4.37% 46
Bahrain Bahrain 151 -17.6% 96
Bahamas Bahamas 147 +8.09% 103
Bosnia & Herzegovina Bosnia & Herzegovina 181 -4.53% 53
Belarus Belarus 150 +5.11% 97
Belize Belize 96.1 -6.43% 158
Bermuda Bermuda 170 +70.5% 65
Bolivia Bolivia 125 -20.1% 131
Brazil Brazil 182 +1.68% 52
Barbados Barbados 95.8 -7.44% 159
Brunei Brunei 177 -21.3% 56
Bhutan Bhutan 117 -11.4% 143
Botswana Botswana 91.2 -30.8% 164
Central African Republic Central African Republic 170 -10.1% 64
Canada Canada 139 -5.07% 115
Switzerland Switzerland 145 +4.84% 105
Chile Chile 152 -4.09% 92
China China 149 -4.68% 100
Côte d’Ivoire Côte d’Ivoire 174 +23.5% 59
Cameroon Cameroon 122 -11.8% 136
Congo - Kinshasa Congo - Kinshasa 190 +4.69% 45
Congo - Brazzaville Congo - Brazzaville 95.8 -15.1% 159
Colombia Colombia 139 -13.1% 114
Comoros Comoros 185 -42.6% 49
Cape Verde Cape Verde 82.1 +15.5% 170
Costa Rica Costa Rica 202 +14.6% 38
Cuba Cuba 57.9 -10.6% 176
Cayman Islands Cayman Islands 70.2 +17.4% 174
Cyprus Cyprus 152 +14.5% 94
Czechia Czechia 162 +5.74% 74
Germany Germany 130 +2.53% 126
Djibouti Djibouti 3,658 -1.69% 1
Dominica Dominica 50.4 -26.6% 178
Denmark Denmark 143 +3.48% 107
Dominican Republic Dominican Republic 137 -5.91% 118
Algeria Algeria 162 -14.7% 76
Ecuador Ecuador 170 -4.71% 65
Egypt Egypt 197 -17.6% 40
Eritrea Eritrea 96.4 -19.2% 157
Spain Spain 150 +1.83% 99
Estonia Estonia 153 -13.9% 89
Ethiopia Ethiopia 127 -8.31% 130
Finland Finland 138 -4.17% 117
Fiji Fiji 120 +1.1% 140
France France 128 +4.49% 128
Faroe Islands Faroe Islands 182 +5.02% 52
Micronesia (Federated States of) Micronesia (Federated States of) 269 -4.37% 15
Gabon Gabon 72.3 -15.1% 172
United Kingdom United Kingdom 112 -2.27% 149
Georgia Georgia 276 +9.02% 13
Ghana Ghana 162 -4.27% 77
Gibraltar Gibraltar 171 +14.9% 63
Guinea Guinea 531 +7.76% 5
Gambia Gambia 251 +613% 18
Guinea-Bissau Guinea-Bissau 93.2 -4.12% 162
Equatorial Guinea Equatorial Guinea 92.7 -17.8% 163
Greece Greece 193 -5.9% 43
Grenada Grenada 141 +23.4% 112
Greenland Greenland 223 +2.49% 26
Guatemala Guatemala 133 -9.52% 123
Guam Guam 51.4 -58.2% 177
Guyana Guyana 1,149 +16.5% 3
Hong Kong SAR China Hong Kong SAR China 112 -5.94% 147
Honduras Honduras 138 -7.3% 116
Croatia Croatia 193 -2.08% 43
Haiti Haiti 102 -29.9% 155
Hungary Hungary 163 +5.98% 73
Indonesia Indonesia 172 -11.3% 60
India India 161 -4.79% 79
Ireland Ireland 169 -2.42% 66
Iran Iran 153 -0.457% 90
Iraq Iraq 193 -16% 42
Iceland Iceland 140 -10.6% 113
Israel Israel 104 -9.14% 153
Italy Italy 148 +2.78% 101
Jamaica Jamaica 174 +11% 58
Jordan Jordan 161 -1.53% 80
Japan Japan 115 -3.93% 144
Kazakhstan Kazakhstan 171 -7.17% 62
Kenya Kenya 122 -3.01% 135
Kyrgyzstan Kyrgyzstan 247 +46.8% 19
Cambodia Cambodia 275 +4.33% 14
Kiribati Kiribati 183 +116% 51
St. Kitts & Nevis St. Kitts & Nevis 49.2 -12% 180
South Korea South Korea 120 -7.55% 139
Kuwait Kuwait 156 -15.8% 86
Laos Laos 235 +1.91% 22
Lebanon Lebanon 104 -7.87% 154
Liberia Liberia 397 +10.1% 7
Libya Libya 108 -34.5% 152
St. Lucia St. Lucia 46 +0.656% 181
Sri Lanka Sri Lanka 113 -9.17% 145
Lesotho Lesotho 88.8 -7.79% 167
Lithuania Lithuania 168 -8.3% 68
Luxembourg Luxembourg 100 -1.28% 156
Latvia Latvia 185 -5.92% 50
Macao SAR China Macao SAR China 124 -1.28% 134
Morocco Morocco 186 +0.377% 48
Moldova Moldova 206 -6.58% 36
Madagascar Madagascar 157 -12% 83
Maldives Maldives 177 +5.06% 57
Mexico Mexico 156 +2.64% 87
Marshall Islands Marshall Islands 121 -38.3% 137
North Macedonia North Macedonia 198 +3.89% 39
Mali Mali 209 +5.67% 33
Malta Malta 133 +6.57% 123
Myanmar (Burma) Myanmar (Burma) 131 -15.7% 125
Mongolia Mongolia 326 +21.2% 9
Northern Mariana Islands Northern Mariana Islands 212 -7.14% 30
Mozambique Mozambique 243 +1.38% 21
Mauritania Mauritania 218 +5.52% 29
Mauritius Mauritius 86.2 -3.9% 168
Malawi Malawi 90.1 +7.39% 166
Malaysia Malaysia 157 -11.1% 85
Namibia Namibia 134 -5.49% 122
New Caledonia New Caledonia 178 -16.4% 55
Niger Niger 91 -2.36% 165
Nigeria Nigeria 110 -11.9% 150
Nicaragua Nicaragua 153 +0.263% 91
Netherlands Netherlands 164 -2.9% 71
Norway Norway 168 -30.5% 69
Nepal Nepal 161 -11.5% 78
Nauru Nauru 403 +0.274% 6
New Zealand New Zealand 121 -8.23% 138
Oman Oman 197 -5.03% 41
Pakistan Pakistan 129 -7.86% 127
Panama Panama 148 +9.58% 102
Peru Peru 188 +0.267% 47
Philippines Philippines 125 -6.86% 131
Palau Palau 29.2 -30% 184
Papua New Guinea Papua New Guinea 150 -13.3% 98
Poland Poland 192 +5.8% 44
North Korea North Korea 6.5 +62.5% 186
Portugal Portugal 152 +1.67% 93
Paraguay Paraguay 142 +19.4% 109
Palestinian Territories Palestinian Territories 152 -4.57% 93
French Polynesia French Polynesia 178 +67.5% 54
Qatar Qatar 124 -24.8% 133
Romania Romania 166 +4.01% 70
Russia Russia 124 -28.3% 132
Rwanda Rwanda 378 +17.3% 8
Saudi Arabia Saudi Arabia 157 -22.2% 84
Senegal Senegal 210 -6.58% 32
Singapore Singapore 136 -7.63% 120
Solomon Islands Solomon Islands 127 +28.6% 129
Sierra Leone Sierra Leone 264 +25.4% 16
El Salvador El Salvador 118 -8.67% 141
Somalia Somalia 113 +15.6% 146
Serbia Serbia 232 +6.03% 23
São Tomé & Príncipe São Tomé & Príncipe 211 +8.58% 31
Suriname Suriname 148 -19.6% 101
Slovakia Slovakia 156 +8.25% 86
Slovenia Slovenia 229 +5.04% 24
Sweden Sweden 141 +0.0708% 111
Eswatini Eswatini 112 -0.266% 148
Seychelles Seychelles 139 +1.46% 115
Syria Syria 288 +41.4% 10
Turks & Caicos Islands Turks & Caicos Islands 81.6 -14.5% 171
Chad Chad 158 -13.4% 82
Togo Togo 144 +7.95% 106
Thailand Thailand 133 -0.969% 124
Tajikistan Tajikistan 284 +14.3% 11
Turkmenistan Turkmenistan 143 +5.39% 108
Timor-Leste Timor-Leste 1,644 -37.8% 2
Tonga Tonga 58.7 -22.4% 175
Trinidad & Tobago Trinidad & Tobago 85.6 -31.1% 169
Tunisia Tunisia 142 +7.66% 110
Turkey Turkey 169 +0.535% 67
Tanzania Tanzania 151 +6.65% 95
Uganda Uganda 281 +63.4% 12
Ukraine Ukraine 94.5 -18.4% 160
Uruguay Uruguay 120 -17.7% 140
United States United States 135 -2.11% 121
Uzbekistan Uzbekistan 208 +25.9% 34
St. Vincent & Grenadines St. Vincent & Grenadines 90.1 -10.6% 166
Venezuela Venezuela 20.9 +64.6% 185
British Virgin Islands British Virgin Islands 93.7 +9.08% 161
Vietnam Vietnam 218 -4.71% 28
Vanuatu Vanuatu 155 -1.9% 88
Samoa Samoa 71.7 +9.63% 173
Yemen Yemen 49.3 -62.9% 179
South Africa South Africa 137 -9.76% 119
Zambia Zambia 158 -10.4% 81
Zimbabwe Zimbabwe 221 +10% 27

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TX.VAL.MRCH.XD.WD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TX.VAL.MRCH.XD.WD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))