Export unit value index (2015 = 100)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 117 +19.2% 141
Afghanistan Afghanistan 143 -2.18% 62
Angola Angola 164 -25.6% 19
Albania Albania 122 -7.31% 126
Andorra Andorra 117 +0.601% 141
United Arab Emirates United Arab Emirates 139 -9.68% 73
Argentina Argentina 123 -9.35% 124
Armenia Armenia 145 -0.619% 58
American Samoa American Samoa 215 +0.326% 1
Antigua & Barbuda Antigua & Barbuda 108 -0.463% 160
Australia Australia 189 -9.26% 4
Austria Austria 147 +7.14% 52
Azerbaijan Azerbaijan 148 -34.2% 49
Burundi Burundi 142 -1.87% 66
Belgium Belgium 140 -3.79% 71
Benin Benin 137 -10.3% 79
Burkina Faso Burkina Faso 159 +3.53% 25
Bangladesh Bangladesh 106 -0.939% 164
Bulgaria Bulgaria 151 -0.788% 38
Bahrain Bahrain 142 -11% 67
Bahamas Bahamas 147 -4.84% 51
Bosnia & Herzegovina Bosnia & Herzegovina 137 -6.79% 78
Belarus Belarus 129 -2.79% 104
Belize Belize 126 +12.9% 116
Bermuda Bermuda 146 -0.41% 55
Bolivia Bolivia 139 -1.91% 76
Brazil Brazil 134 -6.5% 93
Barbados Barbados 128 +2.41% 109
Brunei Brunei 163 -27.2% 20
Bhutan Bhutan 169 -32.2% 11
Botswana Botswana 106 +4.44% 163
Central African Republic Central African Republic 121 +3.43% 129
Canada Canada 127 -10.1% 111
Switzerland Switzerland 143 +2.36% 64
Chile Chile 151 -2.89% 37
China China 106 -7.42% 162
Côte d’Ivoire Côte d’Ivoire 124 +7.95% 122
Cameroon Cameroon 136 -16.4% 84
Congo - Kinshasa Congo - Kinshasa 173 -6.5% 8
Congo - Brazzaville Congo - Brazzaville 142 -12% 65
Colombia Colombia 148 -14.3% 50
Comoros Comoros 89.5 +0.788% 170
Cape Verde Cape Verde 120 -2.12% 132
Costa Rica Costa Rica 112 +1.17% 153
Cuba Cuba 133 -0.3% 95
Cayman Islands Cayman Islands 188 -0.792% 5
Cyprus Cyprus 136 -1.16% 81
Czechia Czechia 149 +8.24% 47
Germany Germany 142 +4.35% 68
Djibouti Djibouti 126 -4.62% 115
Dominica Dominica 120 +2.84% 133
Denmark Denmark 134 +0.828% 92
Dominican Republic Dominican Republic 116 +0.0861% 144
Algeria Algeria 119 -41.4% 136
Ecuador Ecuador 139 -8.37% 73
Egypt Egypt 139 -14.1% 73
Eritrea Eritrea 122 -5.72% 125
Spain Spain 150 +5.34% 42
Estonia Estonia 146 -0.948% 53
Ethiopia Ethiopia 131 -1.72% 98
Finland Finland 135 -0.442% 86
Fiji Fiji 129 +4.27% 103
France France 149 +6.37% 46
Faroe Islands Faroe Islands 129 -3.31% 106
Micronesia (Federated States of) Micronesia (Federated States of) 137 -0.146% 80
Gabon Gabon 143 -13.3% 61
United Kingdom United Kingdom 112 +5.84% 153
Georgia Georgia 133 -2.13% 94
Ghana Ghana 149 +2.26% 44
Gibraltar Gibraltar 78.1 -50.3% 173
Guinea Guinea 144 -7.26% 59
Gambia Gambia 135 +2.74% 87
Guinea-Bissau Guinea-Bissau 154 +23.5% 32
Equatorial Guinea Equatorial Guinea 154 -34% 31
Greece Greece 144 -6.87% 60
Grenada Grenada 109 +2.54% 158
Greenland Greenland 113 -4.24% 151
Guatemala Guatemala 113 -2.17% 152
Guam Guam 137 -13.7% 78
Guyana Guyana 189 -12.8% 3
Hong Kong SAR China Hong Kong SAR China 123 +4.58% 123
Honduras Honduras 130 +3.35% 102
Croatia Croatia 135 -6.81% 85
Haiti Haiti 108 +1.32% 160
Hungary Hungary 145 +7.49% 57
Indonesia Indonesia 142 -18.1% 69
India India 120 -7.4% 131
Ireland Ireland 100 -0.692% 168
Iran Iran 139 -19.4% 74
Iraq Iraq 153 -16.1% 34
Iceland Iceland 124 -8.22% 120
Israel Israel 109 -2.23% 157
Italy Italy 154 +6.93% 30
Jamaica Jamaica 135 -18.4% 89
Jordan Jordan 98.2 -6.39% 169
Japan Japan 102 -2.3% 166
Kazakhstan Kazakhstan 166 -15.1% 16
Kenya Kenya 119 -1.57% 137
Kyrgyzstan Kyrgyzstan 141 -3.23% 70
Cambodia Cambodia 112 +1.92% 155
Kiribati Kiribati 128 -3.97% 107
St. Kitts & Nevis St. Kitts & Nevis 127 +2.83% 112
South Korea South Korea 100 -9.39% 168
Kuwait Kuwait 161 -17.6% 21
Laos Laos 204 -17.3% 2
Lebanon Lebanon 131 +1.94% 98
Liberia Liberia 148 0% 48
Libya Libya 167 -18.1% 14
St. Lucia St. Lucia 131 -0.685% 99
Sri Lanka Sri Lanka 86.6 -11% 171
Lesotho Lesotho 113 +1.89% 150
Lithuania Lithuania 146 -3.13% 56
Luxembourg Luxembourg 137 +2.77% 77
Latvia Latvia 151 -3.44% 36
Macao SAR China Macao SAR China 115 -0.861% 146
Morocco Morocco 126 +0.638% 113
Moldova Moldova 116 -11.8% 144
Madagascar Madagascar 106 -4.84% 161
Maldives Maldives 119 -13.2% 134
Mexico Mexico 129 -0.541% 105
Marshall Islands Marshall Islands 117 +1.48% 143
North Macedonia North Macedonia 122 -2.41% 127
Mali Mali 160 +4.3% 22
Malta Malta 139 +3.11% 72
Myanmar (Burma) Myanmar (Burma) 156 -10.7% 28
Mongolia Mongolia 150 -29% 41
Northern Mariana Islands Northern Mariana Islands 73.8 -58.3% 176
Mozambique Mozambique 170 -28.6% 10
Mauritania Mauritania 151 -1.05% 39
Mauritius Mauritius 121 +9.09% 128
Malawi Malawi 113 +7.19% 149
Malaysia Malaysia 115 -4.57% 147
Namibia Namibia 146 +1.6% 54
New Caledonia New Caledonia 150 -17.4% 40
Niger Niger 144 +3.6% 60
Nigeria Nigeria 168 -19.9% 12
Nicaragua Nicaragua 124 +5.91% 121
Netherlands Netherlands 134 +2.91% 91
Norway Norway 151 -35.9% 36
Nepal Nepal 132 -7.8% 96
Nauru Nauru 67.8 -10.2% 178
New Zealand New Zealand 118 -10.2% 140
Oman Oman 127 -20.5% 112
Pakistan Pakistan 77.9 -11.2% 174
Panama Panama 112 -2.02% 155
Peru Peru 130 +0.465% 101
Philippines Philippines 114 -2.57% 148
Palau Palau 117 -3.78% 142
Papua New Guinea Papua New Guinea 167 -34.7% 13
Poland Poland 149 +7.35% 45
North Korea North Korea 118 -13.8% 139
Portugal Portugal 137 +2.39% 79
Paraguay Paraguay 126 -17.3% 114
Palestinian Territories Palestinian Territories 128 +1.91% 108
French Polynesia French Polynesia 110 -1.26% 156
Qatar Qatar 167 -42.1% 15
Romania Romania 143 +3.32% 63
Russia Russia 130 -17.4% 100
Rwanda Rwanda 149 -0.6% 44
Saudi Arabia Saudi Arabia 146 -13.3% 54
Senegal Senegal 150 -5.14% 43
Singapore Singapore 117 -2.26% 143
Solomon Islands Solomon Islands 101 -2.89% 167
Sierra Leone Sierra Leone 128 -3.61% 107
El Salvador El Salvador 124 -0.64% 119
Somalia Somalia 153 +2.69% 33
Serbia Serbia 125 -2.57% 117
São Tomé & Príncipe São Tomé & Príncipe 139 +2.66% 75
Suriname Suriname 157 +4.52% 27
Slovakia Slovakia 152 +5.78% 35
Slovenia Slovenia 159 +5.16% 24
Sweden Sweden 136 +0.592% 82
Eswatini Eswatini 134 +7.69% 90
Seychelles Seychelles 113 +3.01% 151
Syria Syria 136 -2.31% 84
Turks & Caicos Islands Turks & Caicos Islands 74.3 -39.2% 175
Chad Chad 171 -10.7% 9
Togo Togo 147 -10.2% 51
Thailand Thailand 116 +1.14% 145
Tajikistan Tajikistan 155 -8.41% 29
Turkmenistan Turkmenistan 177 -46.1% 7
Timor-Leste Timor-Leste 166 -23.3% 17
Tonga Tonga 103 +1.58% 165
Trinidad & Tobago Trinidad & Tobago 165 -21.4% 18
Tunisia Tunisia 128 +3.66% 110
Turkey Turkey 113 +0.622% 149
Tanzania Tanzania 135 +1.51% 88
Uganda Uganda 132 -4.91% 97
Ukraine Ukraine 180 -13.9% 6
Uruguay Uruguay 108 -5.27% 159
United States United States 120 -5.35% 130
Uzbekistan Uzbekistan 158 -6.14% 26
St. Vincent & Grenadines St. Vincent & Grenadines 68.9 +3.14% 177
British Virgin Islands British Virgin Islands 78.3 +9.97% 172
Vietnam Vietnam 112 -1.84% 154
Vanuatu Vanuatu 119 +1.1% 135
Samoa Samoa 118 -3.19% 138
Yemen Yemen 136 -11.6% 83
South Africa South Africa 125 -11.7% 118
Zambia Zambia 160 -2.68% 23
Zimbabwe Zimbabwe 139 +1.69% 76

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TX.UVI.MRCH.XD.WD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TX.UVI.MRCH.XD.WD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))