Domestic private health expenditure per capita (current US$)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 62.9 -0.303% 126
Angola Angola 44.3 +64.7% 138
Albania Albania 213 -23.5% 75
Andorra Andorra 847 -7.85% 25
United Arab Emirates United Arab Emirates 944 +16.9% 21
Argentina Argentina 554 +36% 40
Armenia Armenia 555 +14.5% 39
Antigua & Barbuda Antigua & Barbuda 460 +48% 48
Australia Australia 1,741 +3.2% 6
Austria Austria 1,319 -7.59% 10
Azerbaijan Azerbaijan 203 +19% 79
Burundi Burundi 6.9 +6.27% 186
Belgium Belgium 1,341 +0.173% 9
Benin Benin 16.5 -12.7% 166
Burkina Faso Burkina Faso 22.1 -1.26% 158
Bangladesh Bangladesh 45.8 +3.72% 136
Bulgaria Bulgaria 379 +3.15% 52
Bahrain Bahrain 390 -8.31% 51
Bahamas Bahamas 1,011 +9.21% 19
Bosnia & Herzegovina Bosnia & Herzegovina 209 -3.44% 76
Belarus Belarus 171 +38% 86
Belize Belize 98.5 +15.6% 112
Bolivia Bolivia 77.6 +6.15% 120
Brazil Brazil 467 +10.1% 47
Barbados Barbados 707 +12.8% 35
Brunei Brunei 51 +10.6% 132
Bhutan Bhutan 55.7 +130% 129
Botswana Botswana 88.7 -0.0228% 115
Central African Republic Central African Republic 23.2 -0.455% 157
Canada Canada 1,801 +2.71% 5
Switzerland Switzerland 7,131 -1.31% 1
Chile Chile 767 +4.98% 30
China China 303 -1.54% 64
Côte d’Ivoire Côte d’Ivoire 39 -4.97% 142
Cameroon Cameroon 50.9 -4.94% 133
Congo - Kinshasa Congo - Kinshasa 10.5 +6.21% 178
Congo - Brazzaville Congo - Brazzaville 24.3 -30.2% 154
Colombia Colombia 149 -2.84% 93
Comoros Comoros 57.6 -3.78% 128
Cape Verde Cape Verde 78.8 +21.4% 118
Costa Rica Costa Rica 304 +4.91% 63
Cyprus Cyprus 536 -4.56% 44
Czechia Czechia 370 +8.1% 53
Germany Germany 1,216 -12.4% 12
Djibouti Djibouti 26.8 +6.73% 152
Dominica Dominica 162 +25.7% 89
Denmark Denmark 1,036 -11.9% 17
Dominican Republic Dominican Republic 168 +27.1% 87
Algeria Algeria 93.7 +6.83% 114
Ecuador Ecuador 190 +5.02% 81
Egypt Egypt 104 -5.11% 108
Eritrea Eritrea 14.7 +7.33% 171
Spain Spain 756 -8.53% 31
Estonia Estonia 504 +0.698% 45
Ethiopia Ethiopia 13.4 +24.6% 174
Finland Finland 896 -8.74% 23
Fiji Fiji 29.4 -78.6% 150
France France 1,195 -8.07% 13
Micronesia (Federated States of) Micronesia (Federated States of) 47.3 +21.2% 135
Gabon Gabon 79.8 -5.47% 117
United Kingdom United Kingdom 852 -3.14% 24
Georgia Georgia 274 +44.1% 67
Ghana Ghana 23.7 -18.6% 156
Guinea Guinea 33.5 +28.7% 145
Gambia Gambia 9.01 +7.6% 180
Guinea-Bissau Guinea-Bissau 45.1 +5.15% 137
Equatorial Guinea Equatorial Guinea 139 -26.5% 95
Greece Greece 808 +7.67% 28
Grenada Grenada 301 +4.69% 65
Guatemala Guatemala 259 +18.7% 68
Guyana Guyana 133 -6.15% 96
Honduras Honduras 140 -4.05% 94
Croatia Croatia 209 -5.07% 77
Haiti Haiti 30.5 -0.674% 149
Hungary Hungary 339 -11.7% 56
Indonesia Indonesia 60.2 -1.67% 127
India India 47.5 +7.28% 134
Ireland Ireland 1,460 -4.5% 7
Iran Iran 120 +15.2% 100
Iraq Iraq 122 -3% 99
Iceland Iceland 1,050 -3.73% 16
Israel Israel 1,380 +2.31% 8
Italy Italy 801 -7.77% 29
Jamaica Jamaica 105 +3.55% 106
Jordan Jordan 167 -1.16% 88
Japan Japan 544 -18.1% 42
Kazakhstan Kazakhstan 161 +18.8% 90
Kenya Kenya 31.6 +2.57% 147
Kyrgyzstan Kyrgyzstan 33 +16.4% 146
Cambodia Cambodia 72 +2.01% 122
Kiribati Kiribati 7.25 -2.32% 185
St. Kitts & Nevis St. Kitts & Nevis 550 +14% 41
South Korea South Korea 1,136 -8.11% 14
Kuwait Kuwait 217 +34.1% 74
Laos Laos 13.5 -45% 173
Lebanon Lebanon 229 +21.1% 70
Liberia Liberia 70.3 +7.28% 124
Libya Libya 84.8 +5.03% 116
St. Lucia St. Lucia 284 +12.8% 66
Sri Lanka Sri Lanka 66 -13.3% 125
Lesotho Lesotho 17.4 -1.39% 165
Lithuania Lithuania 623 +4.62% 37
Luxembourg Luxembourg 829 -8.09% 27
Latvia Latvia 576 -0.551% 38
Morocco Morocco 111 -4.88% 103
Monaco Monaco 1,022 +21.3% 18
Moldova Moldova 130 +1.22% 98
Madagascar Madagascar 6.26 -5.37% 188
Maldives Maldives 219 +28% 73
Mexico Mexico 313 +3.77% 61
Marshall Islands Marshall Islands 17.5 +0.347% 164
North Macedonia North Macedonia 242 -16.4% 69
Mali Mali 15.6 -5.16% 170
Malta Malta 1,106 -6.92% 15
Myanmar (Burma) Myanmar (Burma) 44 -15.7% 139
Montenegro Montenegro 410 +3.08% 50
Mongolia Mongolia 181 +71.6% 85
Mozambique Mozambique 7.41 +13.4% 184
Mauritania Mauritania 39.1 +3.97% 141
Mauritius Mauritius 309 +8.47% 62
Malawi Malawi 8.66 -18.1% 181
Malaysia Malaysia 226 +8.41% 72
Namibia Namibia 184 -0.393% 82
Niger Niger 12.3 -29.2% 176
Nigeria Nigeria 71.6 +10.9% 123
Nicaragua Nicaragua 77.6 +17.7% 119
Netherlands Netherlands 1,823 -7.9% 4
Norway Norway 1,245 -3.64% 11
Nepal Nepal 51.2 +42.3% 131
Nauru Nauru 42.4 -4.55% 140
New Zealand New Zealand 901 -20.5% 22
Oman Oman 110 +0.648% 105
Pakistan Pakistan 18.9 -16.5% 162
Panama Panama 639 +3.94% 36
Peru Peru 159 +5.91% 92
Philippines Philippines 99.9 -4.45% 111
Palau Palau 754 +3.85% 32
Papua New Guinea Papua New Guinea 7.51 +18.8% 183
Poland Poland 319 -3.32% 58
Portugal Portugal 969 -5.55% 20
Paraguay Paraguay 227 +6.98% 71
Palestinian Territories Palestinian Territories 161 -1.69% 91
Qatar Qatar 317 +14.7% 59
Romania Romania 202 -3.89% 80
Russia Russia 317 +18% 60
Rwanda Rwanda 16.5 +18.2% 167
Saudi Arabia Saudi Arabia 347 -8.96% 54
Sudan Sudan 17.9 +39.3% 163
Senegal Senegal 36.1 -6.62% 144
Singapore Singapore 1,874 +18.4% 3
Solomon Islands Solomon Islands 3.65 +0.161% 190
Sierra Leone Sierra Leone 20.8 -10.3% 160
El Salvador El Salvador 184 +9.45% 83
San Marino San Marino 443 -7.33% 49
Somalia Somalia 6.59 +3.76% 187
Serbia Serbia 346 +0.932% 55
South Sudan South Sudan 20.9 +57% 159
São Tomé & Príncipe São Tomé & Príncipe 25 -0.709% 153
Suriname Suriname 114 +0.347% 101
Slovakia Slovakia 330 -3.2% 57
Slovenia Slovenia 722 -2.08% 33
Sweden Sweden 835 -12.4% 26
Eswatini Eswatini 76.9 -7.64% 121
Seychelles Seychelles 182 +18.5% 84
Syria Syria 15.7 +26.1% 169
Chad Chad 23.7 -10.3% 155
Togo Togo 36.6 -6.18% 143
Thailand Thailand 101 -6.27% 110
Tajikistan Tajikistan 51.4 +4.81% 130
Turkmenistan Turkmenistan 489 +25.5% 46
Timor-Leste Timor-Leste 9.58 +23.1% 179
Tonga Tonga 20.6 -6.09% 161
Trinidad & Tobago Trinidad & Tobago 716 +14.3% 34
Tunisia Tunisia 104 -1.3% 107
Turkey Turkey 95.9 +4.84% 113
Tuvalu Tuvalu 4.65 -4.27% 189
Tanzania Tanzania 10.6 +6.78% 177
Uganda Uganda 16 +7.8% 168
Uruguay Uruguay 543 +28.1% 43
United States United States 5,574 +4.01% 2
Uzbekistan Uzbekistan 111 +17.2% 104
St. Vincent & Grenadines St. Vincent & Grenadines 133 +0.839% 97
Venezuela Venezuela 112 +4.84% 102
Vietnam Vietnam 103 +10.7% 109
Vanuatu Vanuatu 14 +0.672% 172
Samoa Samoa 31.2 -2.49% 148
Yemen Yemen 27.1 +15.9% 151
South Africa South Africa 208 -0.308% 78
Zambia Zambia 8.29 +38.1% 182
Zimbabwe Zimbabwe 12.4 -12.1% 175

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.XPD.PVTD.PC.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.XPD.PVTD.PC.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))