Control of Corruption: Number of Sources

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 2 0% 14
Afghanistan Afghanistan 8 0% 8
Angola Angola 10 0% 6
Albania Albania 9 0% 7
Andorra Andorra 1 0% 15
United Arab Emirates United Arab Emirates 8 0% 8
Argentina Argentina 10 -9.09% 6
Armenia Armenia 8 0% 8
American Samoa American Samoa 1 0% 15
Antigua & Barbuda Antigua & Barbuda 2 0% 14
Australia Australia 9 0% 7
Austria Austria 10 0% 6
Azerbaijan Azerbaijan 6 0% 10
Burundi Burundi 8 0% 8
Belgium Belgium 9 -10% 7
Benin Benin 12 0% 4
Burkina Faso Burkina Faso 12 0% 4
Bangladesh Bangladesh 12 0% 4
Bulgaria Bulgaria 12 0% 4
Bahrain Bahrain 7 0% 9
Bahamas Bahamas 5 +25% 11
Bosnia & Herzegovina Bosnia & Herzegovina 9 +12.5% 7
Belarus Belarus 7 0% 9
Belize Belize 4 +33.3% 12
Bermuda Bermuda 1 0% 15
Bolivia Bolivia 10 -9.09% 6
Brazil Brazil 10 -9.09% 6
Barbados Barbados 6 +20% 10
Brunei Brunei 3 0% 13
Bhutan Bhutan 7 0% 9
Botswana Botswana 11 +10% 5
Central African Republic Central African Republic 9 +12.5% 7
Canada Canada 9 0% 7
Switzerland Switzerland 7 0% 9
Chile Chile 10 -9.09% 6
China China 9 -10% 7
Côte d’Ivoire Côte d’Ivoire 14 +7.69% 2
Cameroon Cameroon 13 0% 3
Congo - Kinshasa Congo - Kinshasa 12 0% 4
Congo - Brazzaville Congo - Brazzaville 10 0% 6
Colombia Colombia 11 0% 5
Comoros Comoros 7 0% 9
Cape Verde Cape Verde 8 0% 8
Costa Rica Costa Rica 10 0% 6
Cuba Cuba 5 0% 11
Cayman Islands Cayman Islands 2 0% 14
Cyprus Cyprus 9 -10% 7
Czechia Czechia 11 -8.33% 5
Germany Germany 10 0% 6
Djibouti Djibouti 8 0% 8
Dominica Dominica 3 0% 13
Denmark Denmark 9 -10% 7
Dominican Republic Dominican Republic 9 -10% 7
Algeria Algeria 8 +14.3% 8
Ecuador Ecuador 9 -10% 7
Egypt Egypt 9 0% 7
Eritrea Eritrea 8 0% 8
Spain Spain 10 0% 6
Estonia Estonia 12 0% 4
Ethiopia Ethiopia 11 0% 5
Finland Finland 9 -10% 7
Fiji Fiji 4 -20% 12
France France 10 0% 6
Micronesia (Federated States of) Micronesia (Federated States of) 3 -25% 13
Gabon Gabon 9 0% 7
United Kingdom United Kingdom 8 0% 8
Georgia Georgia 9 +12.5% 7
Ghana Ghana 15 +15.4% 1
Guinea Guinea 12 0% 4
Gambia Gambia 13 +8.33% 3
Guinea-Bissau Guinea-Bissau 8 0% 8
Equatorial Guinea Equatorial Guinea 5 0% 11
Greece Greece 10 0% 6
Grenada Grenada 4 +33.3% 12
Greenland Greenland 1 0% 15
Guatemala Guatemala 9 -10% 7
Guam Guam 1 0% 15
Guyana Guyana 6 -14.3% 10
Hong Kong SAR China Hong Kong SAR China 10 +11.1% 6
Honduras Honduras 11 -8.33% 5
Croatia Croatia 11 0% 5
Haiti Haiti 9 0% 7
Hungary Hungary 12 0% 4
Indonesia Indonesia 12 0% 4
India India 12 0% 4
Ireland Ireland 9 -10% 7
Iran Iran 7 +16.7% 9
Iraq Iraq 7 +16.7% 9
Iceland Iceland 7 0% 9
Israel Israel 7 0% 9
Italy Italy 9 -10% 7
Jamaica Jamaica 9 +12.5% 7
Jordan Jordan 9 0% 7
Japan Japan 9 -10% 7
Kazakhstan Kazakhstan 10 0% 6
Kenya Kenya 13 0% 3
Kyrgyzstan Kyrgyzstan 12 +9.09% 4
Cambodia Cambodia 11 0% 5
Kiribati Kiribati 3 -25% 13
St. Kitts & Nevis St. Kitts & Nevis 2 0% 14
South Korea South Korea 10 -9.09% 6
Kuwait Kuwait 8 +14.3% 8
Laos Laos 8 0% 8
Lebanon Lebanon 7 0% 9
Liberia Liberia 13 +8.33% 3
Libya Libya 7 0% 9
St. Lucia St. Lucia 3 0% 13
Liechtenstein Liechtenstein 2 0% 14
Sri Lanka Sri Lanka 9 -10% 7
Lesotho Lesotho 12 +9.09% 4
Lithuania Lithuania 11 -8.33% 5
Luxembourg Luxembourg 9 -10% 7
Latvia Latvia 11 -8.33% 5
Macao SAR China Macao SAR China 3 0% 13
Morocco Morocco 11 +10% 5
Monaco Monaco 1 0% 15
Moldova Moldova 8 0% 8
Madagascar Madagascar 13 +8.33% 3
Maldives Maldives 4 -20% 12
Mexico Mexico 11 0% 5
Marshall Islands Marshall Islands 3 0% 13
North Macedonia North Macedonia 9 +12.5% 7
Mali Mali 13 0% 3
Malta Malta 8 -11.1% 8
Myanmar (Burma) Myanmar (Burma) 8 -11.1% 8
Montenegro Montenegro 9 +28.6% 7
Mongolia Mongolia 11 -8.33% 5
Mozambique Mozambique 12 0% 4
Mauritania Mauritania 11 0% 5
Mauritius Mauritius 10 +11.1% 6
Malawi Malawi 13 0% 3
Malaysia Malaysia 10 -9.09% 6
Namibia Namibia 9 0% 7
Niger Niger 12 0% 4
Nigeria Nigeria 13 +8.33% 3
Nicaragua Nicaragua 8 -20% 8
Netherlands Netherlands 9 -10% 7
Norway Norway 7 0% 9
Nepal Nepal 11 0% 5
Nauru Nauru 2 0% 14
New Zealand New Zealand 9 +12.5% 7
Oman Oman 6 +20% 10
Pakistan Pakistan 12 +9.09% 4
Panama Panama 9 -10% 7
Peru Peru 11 0% 5
Philippines Philippines 12 0% 4
Palau Palau 2 0% 14
Papua New Guinea Papua New Guinea 8 -11.1% 8
Poland Poland 11 -8.33% 5
Puerto Rico Puerto Rico 4 +33.3% 12
North Korea North Korea 5 0% 11
Portugal Portugal 10 0% 6
Paraguay Paraguay 10 0% 6
Palestinian Territories Palestinian Territories 5 +25% 11
Qatar Qatar 7 0% 9
Romania Romania 12 0% 4
Russia Russia 8 0% 8
Rwanda Rwanda 11 +10% 5
Saudi Arabia Saudi Arabia 8 +14.3% 8
Sudan Sudan 11 0% 5
Senegal Senegal 13 0% 3
Singapore Singapore 11 +10% 5
Solomon Islands Solomon Islands 5 -16.7% 11
Sierra Leone Sierra Leone 14 +7.69% 2
El Salvador El Salvador 11 0% 5
San Marino San Marino 1 0% 15
Somalia Somalia 8 0% 8
Serbia Serbia 9 0% 7
South Sudan South Sudan 7 0% 9
São Tomé & Príncipe São Tomé & Príncipe 8 0% 8
Suriname Suriname 6 +20% 10
Slovakia Slovakia 12 0% 4
Slovenia Slovenia 11 -8.33% 5
Sweden Sweden 9 -10% 7
Eswatini Eswatini 8 0% 8
Seychelles Seychelles 5 +25% 11
Syria Syria 6 0% 10
Chad Chad 11 +10% 5
Togo Togo 13 +8.33% 3
Thailand Thailand 10 -9.09% 6
Tajikistan Tajikistan 8 0% 8
Turkmenistan Turkmenistan 5 0% 11
Timor-Leste Timor-Leste 7 +16.7% 9
Tonga Tonga 3 -25% 13
Trinidad & Tobago Trinidad & Tobago 8 +14.3% 8
Tunisia Tunisia 11 0% 5
Turkey Turkey 9 0% 7
Tuvalu Tuvalu 3 0% 13
Tanzania Tanzania 14 +7.69% 2
Uganda Uganda 12 0% 4
Ukraine Ukraine 9 0% 7
Uruguay Uruguay 9 -10% 7
United States United States 10 0% 6
Uzbekistan Uzbekistan 10 0% 6
St. Vincent & Grenadines St. Vincent & Grenadines 3 0% 13
Venezuela Venezuela 9 -10% 7
U.S. Virgin Islands U.S. Virgin Islands 1 0% 15
Vietnam Vietnam 10 0% 6
Vanuatu Vanuatu 6 0% 10
Samoa Samoa 4 0% 12
Kosovo Kosovo 9 0% 7
Yemen Yemen 8 0% 8
South Africa South Africa 11 0% 5
Zambia Zambia 12 0% 4
Zimbabwe Zimbabwe 13 +8.33% 3

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'CC.NO.SRC'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'CC.NO.SRC'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))