Computer, communications and other services (% of commercial service exports)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 63.3 +6.54% 24
Albania Albania 21.4 -12.4% 84
Argentina Argentina 57.6 +11.5% 36
Armenia Armenia 36.5 +42.2% 63
Antigua & Barbuda Antigua & Barbuda 11.5 +99.1% 95
Australia Australia 31.1 +14.6% 70
Austria Austria 48.5 +7.45% 47
Azerbaijan Azerbaijan 35.5 +22.8% 64
Belgium Belgium 72.1 +14.8% 12
Bangladesh Bangladesh 64 -5.68% 23
Bulgaria Bulgaria 57.9 +15.3% 35
Bahrain Bahrain 54.1 +121% 40
Bahamas Bahamas 3.76 -20.8% 108
Bosnia & Herzegovina Bosnia & Herzegovina 30 +4.07% 72
Belize Belize 22 +6.02% 83
Brazil Brazil 68.8 +7.03% 18
Brunei Brunei 11 -46.6% 98
Bhutan Bhutan 10.2 +1,122% 101
Canada Canada 57.9 +16% 34
Switzerland Switzerland 76 +45.6% 9
Chile Chile 37.6 +29% 62
China China 60.1 -5.17% 32
Colombia Colombia 34.4 +2.89% 66
Cape Verde Cape Verde 9.13 +0.295% 105
Costa Rica Costa Rica 63 -0.199% 25
Cyprus Cyprus 69.8 +46.3% 16
Czechia Czechia 56.9 +3.06% 37
Germany Germany 70.2 +23.2% 15
Djibouti Djibouti 9.56 -28.2% 104
Dominica Dominica 33.1 +2.42% 68
Denmark Denmark 39.2 +5.61% 59
Dominican Republic Dominican Republic 16.3 +33.2% 91
Ecuador Ecuador 11 +44.5% 97
Spain Spain 42.5 +12.3% 57
Estonia Estonia 66.8 +3.66% 20
Finland Finland 76.8 +4.55% 8
France France 64.2 +24.6% 22
United Kingdom United Kingdom 80.4 +47.7% 4
Georgia Georgia 19.1 +18.4% 86
Gambia Gambia 1.21 +21.3% 111
Greece Greece 16.5 +42.9% 90
Grenada Grenada 12.2 +12.1% 93
Guatemala Guatemala 49 +2.26% 46
Hong Kong SAR China Hong Kong SAR China 46.4 +127% 52
Honduras Honduras 75.1 -2.16% 10
Croatia Croatia 26.8 +0.547% 79
Hungary Hungary 53.9 +6.4% 41
Indonesia Indonesia 42.7 +11.4% 56
India India 81.7 +4.46% 3
Iceland Iceland 23.5 +13.7% 80
Israel Israel 87.4 +1.25% 1
Italy Italy 51.1 +16.1% 43
Jamaica Jamaica 11.9 +3.86% 94
Japan Japan 61.7 +4.91% 28
Kazakhstan Kazakhstan 29.7 +54.5% 73
Cambodia Cambodia 11.5 -9.75% 96
St. Kitts & Nevis St. Kitts & Nevis 9.68 +94.4% 102
South Korea South Korea 58.7 +7.35% 33
Kuwait Kuwait 64.5 +19.7% 21
St. Lucia St. Lucia 4.24 +2.49% 107
Lesotho Lesotho 28.9 +14.6% 76
Lithuania Lithuania 44.7 +19.5% 55
Luxembourg Luxembourg 84.1 +200% 2
Latvia Latvia 51.7 +3.66% 42
Moldova Moldova 49.7 +0.984% 44
Maldives Maldives 1.3 -7.7% 110
Mexico Mexico 31.2 +51.8% 69
North Macedonia North Macedonia 60.5 +4.69% 31
Malta Malta 68.3 +2.26% 19
Montenegro Montenegro 20.3 +15.6% 85
Mozambique Mozambique 3.51 +88.5% 109
Malaysia Malaysia 46.1 -1.13% 53
Namibia Namibia 38.7 +0.626% 60
Nigeria Nigeria 38.6 +476% 61
Nicaragua Nicaragua 49.1 +15.8% 45
Netherlands Netherlands 77.6 +10.5% 6
Norway Norway 48.4 +22.1% 48
Nepal Nepal 30.2 +2,870% 71
New Zealand New Zealand 34.8 +2.23% 65
Pakistan Pakistan 77.2 +11.1% 7
Panama Panama 16.6 +223% 89
Peru Peru 17.9 +19.7% 87
Philippines Philippines 74.4 +0.634% 11
Poland Poland 60.8 +8.43% 30
Portugal Portugal 33.4 +7.49% 67
Paraguay Paraguay 47.5 +3.2% 51
Palestinian Territories Palestinian Territories 70.4 +37.5% 14
Qatar Qatar 10.9 +97.7% 99
Romania Romania 63 +2.85% 26
Russia Russia 47.8 +9.38% 49
Saudi Arabia Saudi Arabia 9.62 +145% 103
Singapore Singapore 61.2 +29.8% 29
Solomon Islands Solomon Islands 28.3 -10.9% 77
El Salvador El Salvador 29 +2.17% 75
Suriname Suriname 62.5 +4.84% 27
Slovakia Slovakia 56.4 +3.57% 39
Slovenia Slovenia 45.2 +9.54% 54
Sweden Sweden 78.3 +8.02% 5
Thailand Thailand 29.5 -13.7% 74
Tajikistan Tajikistan 40.7 -9.62% 58
Timor-Leste Timor-Leste 6.25 +166% 106
Tonga Tonga 28.1 -5.37% 78
Trinidad & Tobago Trinidad & Tobago 23 +110% 82
Turkey Turkey 16.3 +26.5% 92
Ukraine Ukraine 68.8 -0.0728% 17
Uruguay Uruguay 56.8 +11.4% 38
United States United States 70.4 +38.2% 13
Uzbekistan Uzbekistan 17.5 -8.34% 88
St. Vincent & Grenadines St. Vincent & Grenadines 10.4 +12.3% 100
Samoa Samoa 23.2 +29% 81
South Africa South Africa 47.6 +25.6% 50

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TX.VAL.OTHR.ZS.WT'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TX.VAL.OTHR.ZS.WT'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))