Compulsory education, duration (years)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 13 0% 5
Afghanistan Afghanistan 9 0% 9
Angola Angola 10 0% 8
Albania Albania 9 0% 9
Andorra Andorra 10 0% 8
United Arab Emirates United Arab Emirates 12 0% 6
Argentina Argentina 14 0% 4
Armenia Armenia 12 0% 6
Antigua & Barbuda Antigua & Barbuda 11 0% 7
Australia Australia 11 0% 7
Austria Austria 13 0% 5
Azerbaijan Azerbaijan 9 -10% 9
Belgium Belgium 12 0% 6
Benin Benin 6 0% 12
Burkina Faso Burkina Faso 10 0% 8
Bangladesh Bangladesh 5 0% 13
Bulgaria Bulgaria 11 0% 7
Bahrain Bahrain 9 0% 9
Bahamas Bahamas 12 0% 6
Bosnia & Herzegovina Bosnia & Herzegovina 9 0% 9
Belarus Belarus 11 0% 7
Belize Belize 8 0% 10
Bermuda Bermuda 13 0% 5
Bolivia Bolivia 14 0% 4
Brazil Brazil 14 0% 4
Barbados Barbados 11 0% 7
Brunei Brunei 9 0% 9
Central African Republic Central African Republic 10 0% 8
Canada Canada 10 0% 8
Switzerland Switzerland 11 0% 7
Chile Chile 12 0% 6
China China 9 0% 9
Côte d’Ivoire Côte d’Ivoire 10 0% 8
Cameroon Cameroon 6 0% 12
Congo - Kinshasa Congo - Kinshasa 6 0% 12
Congo - Brazzaville Congo - Brazzaville 10 0% 8
Colombia Colombia 12 0% 6
Comoros Comoros 6 0% 12
Cape Verde Cape Verde 10 0% 8
Costa Rica Costa Rica 13 0% 5
Cuba Cuba 9 0% 9
Curaçao Curaçao 14 0% 4
Cayman Islands Cayman Islands 12 0% 6
Cyprus Cyprus 10 0% 8
Czechia Czechia 10 0% 8
Germany Germany 13 0% 5
Djibouti Djibouti 10 0% 8
Dominica Dominica 12 0% 6
Denmark Denmark 10 0% 8
Dominican Republic Dominican Republic 15 0% 3
Algeria Algeria 10 0% 8
Ecuador Ecuador 15 0% 3
Egypt Egypt 12 0% 6
Eritrea Eritrea 8 0% 10
Spain Spain 10 0% 8
Estonia Estonia 9 0% 9
Ethiopia Ethiopia 8 0% 10
Finland Finland 11 0% 7
France France 13 0% 5
Micronesia (Federated States of) Micronesia (Federated States of) 8 0% 10
Gabon Gabon 10 0% 8
United Kingdom United Kingdom 11 0% 7
Georgia Georgia 9 0% 9
Ghana Ghana 11 0% 7
Gibraltar Gibraltar 12 0% 6
Guinea Guinea 6 0% 12
Gambia Gambia 9 0% 9
Guinea-Bissau Guinea-Bissau 9 0% 9
Equatorial Guinea Equatorial Guinea 6 0% 12
Greece Greece 10 0% 8
Grenada Grenada 12 0% 6
Guatemala Guatemala 16 0% 2
Guam Guam 0 14
Guyana Guyana 6 0% 12
Hong Kong SAR China Hong Kong SAR China 9 0% 9
Honduras Honduras 12 0% 6
Croatia Croatia 8 0% 10
Haiti Haiti 6 0% 12
Hungary Hungary 13 0% 5
Indonesia Indonesia 9 0% 9
India India 8 0% 10
Ireland Ireland 10 0% 8
Iran Iran 9 0% 9
Iraq Iraq 6 0% 12
Iceland Iceland 10 0% 8
Israel Israel 15 0% 3
Italy Italy 12 0% 6
Jamaica Jamaica 6 0% 12
Jordan Jordan 10 0% 8
Japan Japan 9 0% 9
Kazakhstan Kazakhstan 9 0% 9
Kenya Kenya 12 0% 6
Kyrgyzstan Kyrgyzstan 10 0% 8
Kiribati Kiribati 9 0% 9
St. Kitts & Nevis St. Kitts & Nevis 12 0% 6
South Korea South Korea 9 0% 9
Kuwait Kuwait 9 0% 9
Laos Laos 9 0% 9
Lebanon Lebanon 10 0% 8
Liberia Liberia 6 0% 12
Libya Libya 9 0% 9
St. Lucia St. Lucia 10 0% 8
Liechtenstein Liechtenstein 9 0% 9
Sri Lanka Sri Lanka 11 0% 7
Lesotho Lesotho 7 0% 11
Lithuania Lithuania 11 0% 7
Luxembourg Luxembourg 12 0% 6
Latvia Latvia 11 0% 7
Macao SAR China Macao SAR China 10 0% 8
Morocco Morocco 9 0% 9
Monaco Monaco 11 0% 7
Moldova Moldova 10 0% 8
Madagascar Madagascar 5 0% 13
Maldives Maldives 7 0% 11
Mexico Mexico 14 0% 4
Marshall Islands Marshall Islands 13 0% 5
North Macedonia North Macedonia 13 0% 5
Mali Mali 9 0% 9
Malta Malta 11 0% 7
Myanmar (Burma) Myanmar (Burma) 5 0% 13
Montenegro Montenegro 9 0% 9
Mongolia Mongolia 12 0% 6
Mauritania Mauritania 9 0% 9
Mauritius Mauritius 12 0% 6
Malawi Malawi 8 0% 10
Malaysia Malaysia 6 0% 12
Namibia Namibia 7 0% 11
New Caledonia New Caledonia 0 14
Nigeria Nigeria 9 0% 9
Nicaragua Nicaragua 7 0% 11
Netherlands Netherlands 13 0% 5
Norway Norway 10 0% 8
Nepal Nepal 9 0% 9
Nauru Nauru 14 0% 4
New Zealand New Zealand 10 0% 8
Oman Oman 10 0% 8
Pakistan Pakistan 12 0% 6
Panama Panama 11 0% 7
Peru Peru 14 0% 4
Philippines Philippines 13 0% 5
Palau Palau 12 0% 6
Poland Poland 9 0% 9
Puerto Rico Puerto Rico 13 0% 5
North Korea North Korea 12 0% 6
Portugal Portugal 12 0% 6
Paraguay Paraguay 13 0% 5
Palestinian Territories Palestinian Territories 10 0% 8
Qatar Qatar 12 0% 6
Romania Romania 10 0% 8
Russia Russia 11 0% 7
Rwanda Rwanda 6 0% 12
Saudi Arabia Saudi Arabia 9 0% 9
Sudan Sudan 8 0% 10
Senegal Senegal 11 0% 7
Singapore Singapore 6 0% 12
Sierra Leone Sierra Leone 9 0% 9
El Salvador El Salvador 15 0% 3
San Marino San Marino 10 0% 8
Somalia Somalia 8 0% 10
Serbia Serbia 8 0% 10
South Sudan South Sudan 8 0% 10
São Tomé & Príncipe São Tomé & Príncipe 6 0% 12
Suriname Suriname 6 0% 12
Slovakia Slovakia 11 0% 7
Slovenia Slovenia 9 0% 9
Sweden Sweden 10 0% 8
Eswatini Eswatini 7 0% 11
Sint Maarten Sint Maarten 14 0% 4
Seychelles Seychelles 11 0% 7
Syria Syria 9 0% 9
Turks & Caicos Islands Turks & Caicos Islands 13 0% 5
Chad Chad 10 0% 8
Togo Togo 10 0% 8
Thailand Thailand 9 0% 9
Tajikistan Tajikistan 9 0% 9
Turkmenistan Turkmenistan 12 0% 6
Timor-Leste Timor-Leste 9 0% 9
Tonga Tonga 15 0% 3
Trinidad & Tobago Trinidad & Tobago 7 0% 11
Tunisia Tunisia 9 0% 9
Turkey Turkey 12 0% 6
Tuvalu Tuvalu 8 0% 10
Tanzania Tanzania 7 0% 11
Uganda Uganda 7 0% 11
Ukraine Ukraine 11 0% 7
Uruguay Uruguay 14 0% 4
United States United States 12 0% 6
Uzbekistan Uzbekistan 12 0% 6
St. Vincent & Grenadines St. Vincent & Grenadines 12 0% 6
Venezuela Venezuela 17 0% 1
British Virgin Islands British Virgin Islands 12 0% 6
Vietnam Vietnam 10 0% 8
Samoa Samoa 8 0% 10
Yemen Yemen 9 0% 9
South Africa South Africa 9 0% 9
Zambia Zambia 7 0% 11
Zimbabwe Zimbabwe 7 0% 11

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.COM.DURS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.COM.DURS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))