Coal rents (% of GDP)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 0 67
Afghanistan Afghanistan 0.0194 +177% 43
Angola Angola 0 67
Albania Albania 0.0323 +218% 38
United Arab Emirates United Arab Emirates 0 67
Argentina Argentina 0.000158 +63.9% 64
Armenia Armenia 0.00000 +85.5% 66
American Samoa American Samoa 0 67
Antigua & Barbuda Antigua & Barbuda 0 67
Australia Australia 0.786 +44.3% 8
Austria Austria 0 67
Azerbaijan Azerbaijan 0 67
Burundi Burundi 0 67
Belgium Belgium 0 67
Benin Benin 0 67
Burkina Faso Burkina Faso 0 67
Bangladesh Bangladesh 0.0133 +82.7% 49
Bulgaria Bulgaria 0.126 +116% 27
Bahrain Bahrain 0 67
Bahamas Bahamas 0 67
Bosnia & Herzegovina Bosnia & Herzegovina 0.302 +64.1% 18
Belarus Belarus 0 67
Belize Belize 0 67
Bermuda Bermuda 0 67
Bolivia Bolivia 0 67
Brazil Brazil 0.0143 +133% 48
Barbados Barbados 0 67
Brunei Brunei 0 67
Bhutan Bhutan 0 67
Botswana Botswana 0.5 +81.1% 13
Central African Republic Central African Republic 0 67
Canada Canada 0.073 +65% 31
Switzerland Switzerland 0 67
Chile Chile 0.000152 -93.7% 65
China China 0.608 +69% 12
Côte d’Ivoire Côte d’Ivoire 0 67
Cameroon Cameroon 0 67
Congo - Kinshasa Congo - Kinshasa 0 67
Congo - Brazzaville Congo - Brazzaville 0 67
Colombia Colombia 0.726 +86.1% 9
Comoros Comoros 0 67
Cape Verde Cape Verde 17.2 +55.2% 1
Costa Rica Costa Rica 0 67
Curaçao Curaçao 0 67
Cayman Islands Cayman Islands 0 67
Cyprus Cyprus 0 67
Czechia Czechia 0.0939 +72.6% 30
Germany Germany 0.0145 +118% 47
Djibouti Djibouti 0 67
Dominica Dominica 0 67
Denmark Denmark 0 67
Dominican Republic Dominican Republic 0 67
Algeria Algeria 0 67
Ecuador Ecuador 0 67
Egypt Egypt 0 67
Spain Spain 0 67
Estonia Estonia 0 67
Ethiopia Ethiopia 0.000164 +96.8% 63
Finland Finland 0 67
Fiji Fiji 0 67
France France 0 67
Gabon Gabon 0 67
United Kingdom United Kingdom 0.00102 -0.0577% 59
Georgia Georgia 0.0079 +181% 53
Ghana Ghana 0 67
Guinea Guinea 0 67
Gambia Gambia 0 67
Guinea-Bissau Guinea-Bissau 0 67
Equatorial Guinea Equatorial Guinea 0 67
Greece Greece 0.0146 +53.9% 46
Grenada Grenada 0 67
Guatemala Guatemala 0 67
Guam Guam 0 67
Guyana Guyana 0 67
Hong Kong SAR China Hong Kong SAR China 0 67
Honduras Honduras 0 67
Croatia Croatia 0 67
Haiti Haiti 0 67
Hungary Hungary 0.00937 +43.2% 51
Indonesia Indonesia 1.22 +82% 6
India India 1.28 +82.9% 5
Ireland Ireland 0 67
Iran Iran 0.0094 +11.4% 50
Iraq Iraq 0 67
Iceland Iceland 0 67
Israel Israel 0 67
Italy Italy 0 67
Jamaica Jamaica 0 67
Jordan Jordan 0 67
Japan Japan 0.000357 +83.2% 62
Kazakhstan Kazakhstan 0.849 +48.9% 7
Kenya Kenya 0 67
Kyrgyzstan Kyrgyzstan 0.258 +49.3% 20
Cambodia Cambodia 0.00481 +99.4% 56
Kiribati Kiribati 0 67
St. Kitts & Nevis St. Kitts & Nevis 0 67
South Korea South Korea 0.0011 +62.8% 58
Lebanon Lebanon 0 67
Liberia Liberia 0 67
Libya Libya 0 67
St. Lucia St. Lucia 0 67
Sri Lanka Sri Lanka 0 67
Lesotho Lesotho 0 67
Lithuania Lithuania 0 67
Luxembourg Luxembourg 0 67
Latvia Latvia 0 67
Macao SAR China Macao SAR China 0 67
Morocco Morocco 0 67
Moldova Moldova 0 67
Madagascar Madagascar 0 67
Maldives Maldives 0 67
Mexico Mexico 0.0161 +44.8% 45
North Macedonia North Macedonia 0.00863 +84.4% 52
Mali Mali 0 67
Malta Malta 0 67
Myanmar (Burma) Myanmar (Burma) 0.0464 +91.1% 35
Montenegro Montenegro 0.145 +56.5% 25
Mongolia Mongolia 4.89 +10.2% 2
Mozambique Mozambique 3.78 +108% 3
Mauritania Mauritania 0.67 +30.4% 10
Mauritius Mauritius 0 67
Malawi Malawi 0.0166 +96.4% 44
Malaysia Malaysia 0.0252 +75.8% 41
Namibia Namibia 0 67
New Caledonia New Caledonia 0 67
Niger Niger 0.0373 +88.2% 36
Nigeria Nigeria 0.000478 +99.4% 61
Nicaragua Nicaragua 0 67
Netherlands Netherlands 0 67
Norway Norway 0.000758 +170% 60
Nepal Nepal 0.00606 +87.4% 54
New Zealand New Zealand 0.0307 +57.3% 39
Oman Oman 0 67
Pakistan Pakistan 0.122 +72% 28
Panama Panama 0 67
Peru Peru 0.00249 +99.5% 57
Philippines Philippines 0.0944 +107% 29
Papua New Guinea Papua New Guinea 0 67
Poland Poland 0.246 +70.7% 21
Puerto Rico Puerto Rico 0 67
Portugal Portugal 0 67
Paraguay Paraguay 0 67
Palestinian Territories Palestinian Territories 0 67
French Polynesia French Polynesia 0 67
Qatar Qatar 0 67
Romania Romania 0.0241 +112% 42
Russia Russia 0.613 +68.9% 11
Rwanda Rwanda 0 67
Saudi Arabia Saudi Arabia 0 67
Sudan Sudan 0 67
Senegal Senegal 0 67
Singapore Singapore 0 67
Solomon Islands Solomon Islands 0 67
Sierra Leone Sierra Leone 0 67
El Salvador El Salvador 0 67
Somalia Somalia 0 67
Serbia Serbia 0.235 +57.9% 22
São Tomé & Príncipe São Tomé & Príncipe 0 67
Suriname Suriname 0 67
Slovakia Slovakia 0.00515 +104% 55
Slovenia Slovenia 0.0259 +45.6% 40
Sweden Sweden 0 67
Eswatini Eswatini 0.137 +80.3% 26
Seychelles Seychelles 0 67
Turks & Caicos Islands Turks & Caicos Islands 0 67
Chad Chad 0 67
Togo Togo 0 67
Thailand Thailand 0.0336 +112% 37
Tajikistan Tajikistan 0.486 +93.8% 14
Timor-Leste Timor-Leste 0 67
Tonga Tonga 0 67
Trinidad & Tobago Trinidad & Tobago 0 67
Tunisia Tunisia 0 67
Turkey Turkey 0.0474 +93.9% 34
Tanzania Tanzania 0.0494 +87.1% 33
Uganda Uganda 0 67
Ukraine Ukraine 0.337 +88.4% 17
Uruguay Uruguay 0 67
United States United States 0.166 +97.8% 24
Uzbekistan Uzbekistan 0.0536 +83.1% 32
St. Vincent & Grenadines St. Vincent & Grenadines 0 67
Vietnam Vietnam 0.377 +128% 16
Vanuatu Vanuatu 0 67
Samoa Samoa 0 67
Kosovo Kosovo 0.379 +69.8% 15
South Africa South Africa 2.44 +51.3% 4
Zambia Zambia 0.231 +66.3% 23
Zimbabwe Zimbabwe 0.29 +39.9% 19

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NY.GDP.COAL.RT.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NY.GDP.COAL.RT.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))