Children out of school, male (% of male primary school age)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Albania Albania 5.91 +32.3% 47
Andorra Andorra 6.11 -14% 46
Armenia Armenia 8.5 +21.6% 32
Australia Australia 0.398 -18.9% 96
Austria Austria 1.58 +93.5% 84
Azerbaijan Azerbaijan 3.84 -49.7% 60
Belgium Belgium 1.2 -18.2% 87
Benin Benin 2.48 -48.9% 71
Burkina Faso Burkina Faso 32.5 +11.8% 4
Bulgaria Bulgaria 5.34 +6% 50
Bahrain Bahrain 8.38 +203% 35
Bosnia & Herzegovina Bosnia & Herzegovina 14.5 +2.73% 18
Belarus Belarus 3.55 -23.7% 65
Belize Belize 10 +53.1% 27
Bolivia Bolivia 3.61 -17.3% 64
Brazil Brazil 4.25 -11.8% 55
Barbados Barbados 6.4 +62.1% 45
Brunei Brunei 4.35 -28.9% 54
Bhutan Bhutan 8.79 +1.65% 30
Botswana Botswana 11.1 -30.8% 25
Canada Canada 3.76 +12.4% 62
Switzerland Switzerland 0.296 -0.394% 97
Chile Chile 0.62 -61.5% 92
Côte d’Ivoire Côte d’Ivoire 6.43 -16.8% 44
Colombia Colombia 7.84 +6.25% 38
Costa Rica Costa Rica 4.74 -0.507% 53
Cuba Cuba 4.79 +106% 52
Cayman Islands Cayman Islands 2.18 -53.5% 74
Germany Germany 2.29 +31.1% 73
Dominica Dominica 11.8 -2.11% 23
Denmark Denmark 0.627 +21.5% 91
Dominican Republic Dominican Republic 8.08 -27% 37
Eritrea Eritrea 42 +0.0839% 1
Spain Spain 1.88 -3.23% 78
Estonia Estonia 1.86 -14.7% 79
Ethiopia Ethiopia 21.2 -3.02% 9
Finland Finland 1.93 +44.2% 77
Micronesia (Federated States of) Micronesia (Federated States of) 17 -0.601% 16
Georgia Georgia 1.63 -86.4% 82
Guatemala Guatemala 7.62 -1.15% 39
Hong Kong SAR China Hong Kong SAR China 0.0428 -87.4% 98
Honduras Honduras 21.7 -8.04% 8
Hungary Hungary 3.75 -1.53% 63
Iceland Iceland 1.45 -2.58% 85
Israel Israel 3.83 +1.6% 61
Italy Italy 2.43 +19.3% 72
Jamaica Jamaica 8.74 -46.2% 31
Jordan Jordan 1.59 -28.5% 83
Kazakhstan Kazakhstan 9.38 +1.07% 28
Kyrgyzstan Kyrgyzstan 5.48 +12.8% 49
Cambodia Cambodia 14.3 +60.2% 19
Kiribati Kiribati 8.49 +94.2% 33
South Korea South Korea 0.972 -28.2% 89
Laos Laos 7.54 +44.4% 40
Liberia Liberia 38.6 +10.8% 2
Lesotho Lesotho 25.1 -4.81% 7
Luxembourg Luxembourg 0.51 -66.2% 95
Latvia Latvia 1.8 +11% 80
Macao SAR China Macao SAR China 18.3 +33.3% 12
Maldives Maldives 7.04 +80.1% 42
Marshall Islands Marshall Islands 4.16 -4.93% 58
North Macedonia North Macedonia 3.25 -57.9% 67
Malta Malta 6.95 +41.2% 43
Mongolia Mongolia 5.89 -1.75% 48
Malaysia Malaysia 5.34 +14.9% 51
Niger Niger 36.8 +1.27% 3
Netherlands Netherlands 0.53 +71.8% 94
Norway Norway 0.94 -6.95% 90
Nauru Nauru 12.7 -22.7% 21
New Zealand New Zealand 2.68 +87.2% 69
Oman Oman 11.3 -0.433% 24
Pakistan Pakistan 20.3 -7.75% 10
Panama Panama 4.17 -2.17% 57
Philippines Philippines 10.5 -8.49% 26
Palau Palau 17.2 +408% 14
Paraguay Paraguay 12 -2.77% 22
Palestinian Territories Palestinian Territories 8.95 +24.2% 29
Qatar Qatar 8.41 -33% 34
Romania Romania 15.5 +64.2% 17
Russia Russia 3.27 +25.5% 66
Senegal Senegal 32.3 +3.58% 5
Singapore Singapore 1.06 +82.9% 88
El Salvador El Salvador 17.1 -0.211% 15
San Marino San Marino 7.24 +5.15% 41
Serbia Serbia 1.76 -55.8% 81
Slovakia Slovakia 2.93 -32.7% 68
Slovenia Slovenia 1.22 -21.5% 86
Sweden Sweden 0.56 +13.1% 93
Seychelles Seychelles 2.12 +141% 76
Syria Syria 29.2 -12.7% 6
Chad Chad 18.9 +0.651% 11
Tunisia Tunisia 2.13 +30.3% 75
Tuvalu Tuvalu 2.59 -77.2% 70
Tanzania Tanzania 17.5 +4.27% 13
United States United States 4.17 +3.5% 56
Uzbekistan Uzbekistan 4.03 +118% 59
Vanuatu Vanuatu 8.29 +67.3% 36
South Africa South Africa 13 +11.6% 20

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.PRM.UNER.MA.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.PRM.UNER.MA.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))