Children out of school, female (% of female primary school age)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Albania Albania 11.1 +24.1% 24
Andorra Andorra 8.07 -10.2% 38
Armenia Armenia 10.2 +11.4% 27
Australia Australia 0.189 -20.4% 97
Austria Austria 1.77 +63.4% 76
Azerbaijan Azerbaijan 4.8 -43.1% 52
Belgium Belgium 1.25 -15.7% 84
Benin Benin 8.43 -23.7% 35
Burkina Faso Burkina Faso 31.9 +10.2% 5
Bulgaria Bulgaria 5.24 +4.07% 50
Bahrain Bahrain 7.76 +297% 40
Bosnia & Herzegovina Bosnia & Herzegovina 15.2 +7.75% 15
Belarus Belarus 8.6 +14.6% 34
Belize Belize 9.05 +71.1% 31
Bolivia Bolivia 3.14 -20.5% 64
Brazil Brazil 3.7 -34.5% 60
Barbados Barbados 7.28 +46.1% 42
Brunei Brunei 2.98 -12.8% 65
Bhutan Bhutan 0.909 +400% 90
Botswana Botswana 9.04 -37.8% 32
Canada Canada 4.23 +3.53% 55
Switzerland Switzerland 0.229 +34.7% 96
Chile Chile 1.99 -27.5% 73
Côte d’Ivoire Côte d’Ivoire 13.1 -0.288% 19
Colombia Colombia 6.79 +3.18% 46
Costa Rica Costa Rica 4.73 +3.87% 53
Cuba Cuba 3.97 +98.3% 58
Cayman Islands Cayman Islands 22.3 -1.93% 10
Germany Germany 1.52 +30.6% 81
Dominica Dominica 12 -2.72% 21
Denmark Denmark 0.543 +29.4% 94
Dominican Republic Dominican Republic 7 -27.1% 44
Eritrea Eritrea 47.8 -1.24% 1
Spain Spain 1.7 -3.86% 78
Estonia Estonia 1.79 -13.4% 75
Ethiopia Ethiopia 26.6 -4.21% 8
Finland Finland 2.03 +46.2% 72
Micronesia (Federated States of) Micronesia (Federated States of) 14.8 +3.11% 16
Georgia Georgia 0.991 -93.6% 88
Guatemala Guatemala 7.76 -3.17% 41
Hong Kong SAR China Hong Kong SAR China 1.51 +2,149% 82
Honduras Honduras 19.2 -7.44% 12
Hungary Hungary 3.61 -7.78% 62
Iceland Iceland 1.58 +17.3% 80
Israel Israel 3.47 -0.32% 63
Italy Italy 2.59 +18.8% 69
Jamaica Jamaica 10.4 -38.5% 26
Jordan Jordan 2.2 -24.1% 71
Kazakhstan Kazakhstan 8.28 -4.3% 37
Kyrgyzstan Kyrgyzstan 6.72 +16.8% 48
Cambodia Cambodia 11.3 +55.8% 23
Kiribati Kiribati 7.11 +38.9% 43
South Korea South Korea 1.18 -23.3% 86
Laos Laos 8.39 +27.8% 36
Liberia Liberia 36.7 +5.07% 3
Lesotho Lesotho 25.2 -2.92% 9
Luxembourg Luxembourg 0.172 -90.4% 98
Latvia Latvia 1.07 +17.2% 87
Macao SAR China Macao SAR China 14.1 +21.2% 17
Maldives Maldives 4.88 +10,866% 51
Marshall Islands Marshall Islands 0.546 -35.6% 93
North Macedonia North Macedonia 2.66 -61.9% 68
Malta Malta 6.79 +30.1% 45
Mongolia Mongolia 4.51 -5.09% 54
Malaysia Malaysia 4 +23.1% 57
Niger Niger 41.6 -0.982% 2
Netherlands Netherlands 0.275 +306% 95
Norway Norway 0.96 +10.9% 89
Nauru Nauru 9.13 -1.73% 30
New Zealand New Zealand 2.41 +90.5% 70
Oman Oman 10.8 +3.62% 25
Pakistan Pakistan 30.3 -4.35% 6
Panama Panama 3.63 -15.3% 61
Philippines Philippines 8.78 -7.68% 33
Palau Palau 18.3 +3,071% 13
Paraguay Paraguay 11.9 -2.24% 22
Palestinian Territories Palestinian Territories 9.46 +12.2% 29
Qatar Qatar 6.77 -44.5% 47
Romania Romania 15.7 +61.7% 14
Russia Russia 1.96 +32.3% 74
Senegal Senegal 20.7 +1.4% 11
Singapore Singapore 0.799 +10.5% 91
El Salvador El Salvador 14 -0.446% 18
San Marino San Marino 5.35 -6.02% 49
Serbia Serbia 1.64 -52.5% 79
Slovakia Slovakia 2.78 -35.4% 67
Slovenia Slovenia 1.19 -18.2% 85
Sweden Sweden 0.574 +10.2% 92
Seychelles Seychelles 1.73 +0.319% 77
Syria Syria 28.7 -12.9% 7
Chad Chad 32.6 -1.55% 4
Tunisia Tunisia 1.27 +187% 83
Tuvalu Tuvalu 2.8 -50.1% 66
Tanzania Tanzania 13 -1.22% 20
United States United States 3.79 -9.1% 59
Uzbekistan Uzbekistan 4.2 +129% 56
Vanuatu Vanuatu 8.01 +65.8% 39
South Africa South Africa 10.1 +277% 28

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.PRM.UNER.FE.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.PRM.UNER.FE.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))