Cereal production (metric tons)

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 4,824,672 -2.94% 54
Angola Angola 3,173,959 +3.96% 76
Albania Albania 690,850 -0.04% 115
United Arab Emirates United Arab Emirates 23,031 -1.89% 153
Argentina Argentina 91,584,183 +4.44% 6
Armenia Armenia 239,505 +59.9% 131
Antigua & Barbuda Antigua & Barbuda 15.7 +47.4% 178
Australia Australia 56,306,821 +10.2% 11
Austria Austria 5,205,750 -2.08% 51
Azerbaijan Azerbaijan 3,055,970 -6.21% 78
Burundi Burundi 466,394 +1.84% 120
Belgium Belgium 2,779,540 +13.3% 82
Benin Benin 2,297,373 -0.5% 88
Burkina Faso Burkina Faso 5,179,059 +11.1% 52
Bangladesh Bangladesh 62,549,532 +1.54% 9
Bulgaria Bulgaria 9,790,690 -15.9% 37
Bahamas Bahamas 608 -0.0296% 168
Bosnia & Herzegovina Bosnia & Herzegovina 1,431,169 +2.18% 100
Belarus Belarus 6,800,829 -1.65% 45
Belize Belize 146,715 +7.4% 139
Bolivia Bolivia 2,615,641 -30.1% 83
Brazil Brazil 135,485,143 +20.9% 5
Barbados Barbados 51 +2.2% 176
Brunei Brunei 4,200 +2.44% 161
Bhutan Bhutan 71,365 -8.13% 146
Botswana Botswana 85,049 -30.4% 144
Central African Republic Central African Republic 294,070 +2.89% 128
Canada Canada 65,040,432 +36.8% 8
Switzerland Switzerland 865,538 +10.4% 112
Chile Chile 2,588,505 -14.7% 84
China China 633,293,471 +0.111% 1
Côte d’Ivoire Côte d’Ivoire 3,354,721 +13.5% 73
Cameroon Cameroon 3,843,705 +3.44% 65
Congo - Kinshasa Congo - Kinshasa 4,043,070 +4.15% 61
Congo - Brazzaville Congo - Brazzaville 30,142 +0.148% 151
Colombia Colombia 4,570,107 +0.311% 58
Comoros Comoros 19,191 +2.64% 154
Cape Verde Cape Verde 222 -50.6% 172
Costa Rica Costa Rica 110,446 -47.7% 142
Cuba Cuba 355,610 -23.8% 124
Cyprus Cyprus 61,320 +13.6% 148
Czechia Czechia 8,218,420 -0.106% 40
Germany Germany 43,479,000 +2.64% 15
Djibouti Djibouti 18.3 +5.18% 177
Dominica Dominica 192 +0.167% 175
Denmark Denmark 9,464,200 +9.54% 38
Dominican Republic Dominican Republic 1,212,049 +4.43% 104
Algeria Algeria 4,718,204 +69.5% 56
Ecuador Ecuador 2,928,003 -0.681% 80
Egypt Egypt 23,938,177 +3.66% 25
Eritrea Eritrea 305,160 -0.0226% 126
Spain Spain 19,292,230 -24.4% 27
Estonia Estonia 1,528,560 +18.9% 98
Ethiopia Ethiopia 31,616,416 +3.31% 20
Finland Finland 3,684,010 +39.1% 67
Fiji Fiji 14,700 +24.3% 156
France France 59,927,490 -10.4% 10
Micronesia (Federated States of) Micronesia (Federated States of) 284 -0.337% 171
Gabon Gabon 46,687 -0.264% 149
United Kingdom United Kingdom 24,362,311 +8.91% 24
Georgia Georgia 377,724 -13.6% 123
Ghana Ghana 5,136,566 +5.73% 53
Guinea Guinea 4,110,258 +1.79% 59
Gambia Gambia 106,764 -5.15% 143
Guinea-Bissau Guinea-Bissau 301,273 +7.4% 127
Greece Greece 3,203,370 -0.938% 75
Grenada Grenada 386 +0.463% 170
Guatemala Guatemala 2,027,272 -4.86% 90
Guyana Guyana 933,600 +8.06% 111
Hong Kong SAR China Hong Kong SAR China 0.06 +20% 179
Honduras Honduras 751,127 +0.999% 114
Croatia Croatia 3,023,810 -17% 79
Haiti Haiti 340,000 -8.85% 125
Hungary Hungary 9,060,660 -35.2% 39
Indonesia Indonesia 78,312,977 +9.63% 7
India India 355,088,430 -0.00616% 3
Ireland Ireland 2,485,680 +5.15% 86
Iran Iran 14,812,659 -0.158% 30
Iraq Iraq 3,421,743 -35.5% 71
Iceland Iceland 8,900 +18.8% 157
Israel Israel 202,017 -24.7% 134
Italy Italy 14,300,570 -13.7% 31
Jamaica Jamaica 2,426 +14.3% 164
Jordan Jordan 65,793 -35.8% 147
Japan Japan 11,631,440 -2.25% 33
Kazakhstan Kazakhstan 22,040,640 +33.1% 26
Kenya Kenya 3,753,773 -5.43% 66
Kyrgyzstan Kyrgyzstan 1,912,758 +39% 91
Cambodia Cambodia 12,787,000 -0.922% 32
South Korea South Korea 5,205,825 -4.36% 50
Kuwait Kuwait 26,675 -6.77% 152
Laos Laos 4,057,610 +0.681% 60
Lebanon Lebanon 133,397 -0.0494% 140
Liberia Liberia 288,000 +12.7% 129
Libya Libya 209,957 +0.0857% 132
Sri Lanka Sri Lanka 3,652,343 -35% 69
Lesotho Lesotho 82,451 -16.1% 145
Lithuania Lithuania 5,623,660 +5.3% 49
Luxembourg Luxembourg 170,660 +16% 137
Latvia Latvia 3,243,700 +8.32% 74
Morocco Morocco 3,509,673 -66.4% 70
Moldova Moldova 1,758,121 -62.2% 94
Madagascar Madagascar 4,803,369 +3.84% 55
Maldives Maldives 204 -0.375% 173
Mexico Mexico 36,317,244 -0.724% 18
North Macedonia North Macedonia 542,164 -3.57% 118
Mali Mali 10,289,006 +16.7% 35
Malta Malta 0 180
Myanmar (Burma) Myanmar (Burma) 27,209,802 -9.75% 23
Montenegro Montenegro 6,861 +5.99% 158
Mongolia Mongolia 428,649 -30.2% 122
Mozambique Mozambique 2,506,062 +4.47% 85
Mauritania Mauritania 555,395 +10.9% 117
Mauritius Mauritius 823 -25.6% 167
Malawi Malawi 4,024,666 -17.8% 62
Malaysia Malaysia 2,427,608 -3.53% 87
Namibia Namibia 173,581 +8.05% 136
New Caledonia New Caledonia 4,247 -43.4% 160
Niger Niger 5,923,896 +69% 46
Nigeria Nigeria 30,392,680 +1.6% 21
Nicaragua Nicaragua 949,097 +2.7% 110
Netherlands Netherlands 1,638,280 +22.6% 96
Norway Norway 1,325,000 +11.8% 101
Nepal Nepal 11,128,373 +4.71% 34
New Zealand New Zealand 967,399 -2.85% 108
Oman Oman 208,826 +60.5% 133
Pakistan Pakistan 47,717,929 -6.99% 13
Panama Panama 515,000 -5.09% 119
Peru Peru 5,643,431 -0.67% 48
Philippines Philippines 28,012,591 -0.879% 22
Papua New Guinea Papua New Guinea 18,357 -0.024% 155
Poland Poland 34,987,760 +2.92% 19
Puerto Rico Puerto Rico 196 +6.59% 174
North Korea North Korea 4,662,162 -1.41% 57
Portugal Portugal 1,018,080 -9.56% 107
Paraguay Paraguay 7,907,177 +25.4% 42
Palestinian Territories Palestinian Territories 44,876 +62.4% 150
Qatar Qatar 2,643 -20% 163
Romania Romania 18,860,480 -32.1% 28
Russia Russia 153,096,459 +30.2% 4
Rwanda Rwanda 807,219 -0.323% 113
Saudi Arabia Saudi Arabia 1,068,744 +21.8% 105
Sudan Sudan 7,456,084 +46.4% 44
Senegal Senegal 3,663,690 +3.62% 68
Solomon Islands Solomon Islands 2,754 +0.188% 162
Sierra Leone Sierra Leone 1,535,047 -28% 97
El Salvador El Salvador 953,000 +0.328% 109
Somalia Somalia 177,645 -0.023% 135
Serbia Serbia 8,037,358 -21.7% 41
South Sudan South Sudan 1,063,299 +26.5% 106
São Tomé & Príncipe São Tomé & Príncipe 532 -10.4% 169
Suriname Suriname 266,230 +0.93% 130
Slovakia Slovakia 3,382,800 -21.1% 72
Slovenia Slovenia 576,200 -17.8% 116
Sweden Sweden 5,823,200 +16.9% 47
Eswatini Eswatini 129,694 +26.3% 141
Syria Syria 2,276,238 -9.49% 89
Chad Chad 2,798,641 +6.81% 81
Togo Togo 1,439,850 +2.58% 99
Thailand Thailand 39,729,767 +3.64% 16
Tajikistan Tajikistan 1,324,014 -5.32% 102
Turkmenistan Turkmenistan 1,222,914 -19.4% 103
Timor-Leste Timor-Leste 163,000 +60.6% 138
Trinidad & Tobago Trinidad & Tobago 5,125 -4.23% 159
Tunisia Tunisia 1,713,882 +2.06% 95
Turkey Turkey 38,667,033 +21.3% 17
Tanzania Tanzania 10,271,238 -18.9% 36
Uganda Uganda 3,876,858 -47.2% 63
Ukraine Ukraine 53,535,724 -37.3% 12
Uruguay Uruguay 3,876,753 -4.24% 64
United States United States 410,940,915 -9.01% 2
Uzbekistan Uzbekistan 7,516,978 +4.46% 43
St. Vincent & Grenadines St. Vincent & Grenadines 871 +7.6% 166
Venezuela Venezuela 1,868,484 -19.1% 93
Vietnam Vietnam 47,096,981 -2.49% 14
Vanuatu Vanuatu 926 +0.252% 165
Yemen Yemen 454,000 -48.4% 121
South Africa South Africa 18,685,898 -5.94% 29
Zambia Zambia 3,056,715 -22.7% 77
Zimbabwe Zimbabwe 1,887,720 -7.62% 92

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'AG.PRD.CREL.MT'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'AG.PRD.CREL.MT'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))