Carbon intensity of GDP (kg CO2e per constant 2015 US$ of GDP)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.158 +1.12% 146
Afghanistan Afghanistan 0.556 +3.08% 46
Angola Angola 0.329 +2.11% 89
Albania Albania 0.307 -4.15% 97
United Arab Emirates United Arab Emirates 0.462 -3.92% 61
Argentina Argentina 0.312 -3.46% 95
Armenia Armenia 0.501 -2.14% 56
Antigua & Barbuda Antigua & Barbuda 0.195 +2.92% 139
Australia Australia 0.228 -3.65% 127
Austria Austria 0.139 -3.01% 160
Azerbaijan Azerbaijan 0.743 +7.02% 27
Burundi Burundi 0.243 -2.05% 121
Belgium Belgium 0.16 -7.17% 145
Benin Benin 0.361 -8.55% 83
Burkina Faso Burkina Faso 0.35 -5.16% 84
Bangladesh Bangladesh 0.386 -4.91% 77
Bulgaria Bulgaria 0.629 -22% 38
Bahrain Bahrain 0.936 -0.718% 20
Bahamas Bahamas 0.128 +2.32% 164
Bosnia & Herzegovina Bosnia & Herzegovina 1.06 -5.05% 14
Belarus Belarus 0.908 -8.44% 22
Belize Belize 0.109 +5.21% 171
Bermuda Bermuda 0.0471 +0.503% 186
Bolivia Bolivia 0.603 +1.57% 40
Brazil Brazil 0.245 -3.02% 119
Barbados Barbados 0.143 +0.67% 158
Brunei Brunei 0.739 +1.69% 29
Bhutan Bhutan 0.724 -1.69% 30
Botswana Botswana 0.412 -1.22% 70
Central African Republic Central African Republic 0.18 +3.7% 142
Canada Canada 0.318 -1.56% 92
Switzerland Switzerland 0.0427 -1.23% 188
Chile Chile 0.299 -5.94% 102
China China 0.753 +0.413% 25
Côte d’Ivoire Côte d’Ivoire 0.2 -8.29% 137
Cameroon Cameroon 0.258 -3.78% 115
Congo - Kinshasa Congo - Kinshasa 0.0668 -10.1% 182
Congo - Brazzaville Congo - Brazzaville 0.699 -7.83% 33
Colombia Colombia 0.282 +9.14% 107
Comoros Comoros 0.248 -2.82% 118
Cape Verde Cape Verde 0.46 -7.93% 62
Costa Rica Costa Rica 0.117 +0.82% 168
Cuba Cuba 0.269 +7.93% 111
Cayman Islands Cayman Islands 0.0602 +1.04% 185
Cyprus Cyprus 0.24 -2.72% 122
Czechia Czechia 0.411 -8.92% 71
Germany Germany 0.158 -11.4% 147
Djibouti Djibouti 0.207 -6.78% 133
Dominica Dominica 0.134 +1.69% 161
Denmark Denmark 0.0734 -7.18% 181
Dominican Republic Dominican Republic 0.314 +3.49% 94
Algeria Algeria 0.838 -7.17% 24
Ecuador Ecuador 0.408 +5.17% 72
Egypt Egypt 0.529 -2.78% 51
Spain Spain 0.157 -10.1% 148
Estonia Estonia 0.415 -6.32% 69
Ethiopia Ethiopia 0.148 -5.23% 152
Finland Finland 0.127 -9.89% 165
Fiji Fiji 0.417 -3.87% 68
France France 0.106 -9.87% 172
Faroe Islands Faroe Islands 0.000657 -2.43% 189
Micronesia (Federated States of) Micronesia (Federated States of) 0 190
Gabon Gabon 0.303 -10.9% 98
United Kingdom United Kingdom 0.0933 -8.11% 178
Georgia Georgia 0.56 -5.58% 45
Ghana Ghana 0.342 -5.49% 86
Guinea Guinea 0.254 -7.57% 116
Gambia Gambia 0.309 -7.38% 96
Guinea-Bissau Guinea-Bissau 0.21 -7.09% 131
Equatorial Guinea Equatorial Guinea 0.399 -4.37% 74
Greece Greece 0.235 -8.08% 123
Grenada Grenada 0.124 +0.754% 166
Greenland Greenland 0.205 +0.243% 136
Guatemala Guatemala 0.263 +3.22% 113
Guyana Guyana 0.173 -25.7% 143
Hong Kong SAR China Hong Kong SAR China 0.106 +2.96% 173
Honduras Honduras 0.407 +2.32% 73
Croatia Croatia 0.264 -3.12% 112
Haiti Haiti 0.249 +6.24% 117
Hungary Hungary 0.279 -7.15% 108
Indonesia Indonesia 0.572 -2.22% 43
India India 0.905 -1.25% 23
Ireland Ireland 0.0668 -1.01% 183
Iran Iran 1.52 -2.52% 5
Iraq Iraq 0.987 +0.756% 18
Iceland Iceland 0.132 -10.1% 163
Israel Israel 0.148 -4.29% 153
Italy Italy 0.152 -8.85% 151
Jamaica Jamaica 0.452 +5.05% 65
Jordan Jordan 0.521 +2.61% 53
Japan Japan 0.205 -7.82% 135
Kazakhstan Kazakhstan 1.03 -4.99% 17
Kenya Kenya 0.217 -3.74% 129
Kyrgyzstan Kyrgyzstan 1.14 -6.91% 10
Cambodia Cambodia 0.495 -1.39% 58
Kiribati Kiribati 0.373 +0.726% 80
St. Kitts & Nevis St. Kitts & Nevis 0.116 +1.04% 169
South Korea South Korea 0.325 -3.74% 90
Kuwait Kuwait 0.931 +3.77% 21
Laos Laos 1.28 +2.16% 7
Lebanon Lebanon 0.515 +3.52% 54
Liberia Liberia 0.456 -6.92% 63
Libya Libya 1.1 -2.52% 11
St. Lucia St. Lucia 0.145 +3.2% 155
Sri Lanka Sri Lanka 0.235 +5.14% 124
Lesotho Lesotho 0.39 +1.26% 76
Lithuania Lithuania 0.244 -0.61% 120
Luxembourg Luxembourg 0.101 -2.84% 177
Latvia Latvia 0.207 -4.33% 134
Macao SAR China Macao SAR China 0.0745 -41.1% 180
Morocco Morocco 0.536 -3.9% 49
Moldova Moldova 1.07 +3.74% 13
Madagascar Madagascar 0.295 -1.41% 105
Maldives Maldives 0.479 -1.23% 59
Mexico Mexico 0.366 +1.2% 82
Marshall Islands Marshall Islands 0 190
North Macedonia North Macedonia 0.75 +2.41% 26
Mali Mali 0.315 -7.08% 93
Malta Malta 0.0929 -10.3% 179
Myanmar (Burma) Myanmar (Burma) 0.523 +2.03% 52
Mongolia Mongolia 1.81 +1.1% 2
Mozambique Mozambique 0.475 -7.88% 60
Mauritania Mauritania 0.568 -8.65% 44
Mauritius Mauritius 0.301 -0.9% 99
Malawi Malawi 0.549 +6.39% 47
Malaysia Malaysia 0.706 -0.272% 32
Namibia Namibia 0.37 -1.78% 81
Niger Niger 0.194 -4.42% 140
Nigeria Nigeria 0.232 -4.4% 125
Nicaragua Nicaragua 0.374 +1.45% 79
Netherlands Netherlands 0.134 -7.66% 162
Norway Norway 0.101 -1.17% 176
Nepal Nepal 0.531 +2.11% 50
Nauru Nauru 0 190
New Zealand New Zealand 0.162 +2.03% 144
Oman Oman 1.03 +1.13% 16
Pakistan Pakistan 0.501 -8.27% 57
Panama Panama 0.196 +14.2% 138
Peru Peru 0.263 +2.86% 114
Philippines Philippines 0.375 +1.47% 78
Palau Palau 6.56 +1.07% 1
Papua New Guinea Papua New Guinea 0.228 -1.36% 126
Poland Poland 0.449 -9.8% 66
Puerto Rico Puerto Rico 0.144 +8.81% 156
Portugal Portugal 0.153 -10.8% 150
Paraguay Paraguay 0.187 -3.89% 141
French Polynesia French Polynesia 0.207 +0.416% 132
Qatar Qatar 0.74 +6.47% 28
Romania Romania 0.299 -9.04% 101
Russia Russia 1.34 -1.82% 6
Rwanda Rwanda 0.117 -6.27% 167
Saudi Arabia Saudi Arabia 0.721 +2.36% 31
Sudan Sudan 0.627 +40.9% 39
Senegal Senegal 0.456 -6.67% 64
Singapore Singapore 0.146 +0.521% 154
Solomon Islands Solomon Islands 0.27 +0.732% 110
Sierra Leone Sierra Leone 0.114 -7.8% 170
El Salvador El Salvador 0.296 +2.21% 104
Somalia Somalia 0.102 -3.82% 175
São Tomé & Príncipe São Tomé & Príncipe 0.672 +4.1% 34
Suriname Suriname 0.581 +0.957% 42
Slovakia Slovakia 0.331 -4.03% 88
Slovenia Slovenia 0.222 -9.94% 128
Sweden Sweden 0.0616 -2.14% 184
Eswatini Eswatini 0.3 -0.643% 100
Seychelles Seychelles 0.636 +0.621% 37
Syria Syria 1.62 +2.43% 4
Turks & Caicos Islands Turks & Caicos Islands 0.0468 -7.31% 187
Chad Chad 0.143 -1.49% 157
Togo Togo 0.299 -7.41% 103
Thailand Thailand 0.597 -2.59% 41
Tajikistan Tajikistan 0.637 -6.41% 36
Turkmenistan Turkmenistan 1.14 -6.82% 9
Timor-Leste Timor-Leste 0.397 +20.6% 75
Tonga Tonga 0.447 +1.32% 67
Trinidad & Tobago Trinidad & Tobago 1.25 -3.9% 8
Tunisia Tunisia 0.652 +3.37% 35
Turkey Turkey 0.349 -3.86% 85
Tuvalu Tuvalu 0 190
Tanzania Tanzania 0.275 -2.86% 109
Uganda Uganda 0.155 -5.11% 149
Ukraine Ukraine 1.78 -6.71% 3
Uruguay Uruguay 0.142 +0.482% 159
United States United States 0.212 -4.93% 130
Uzbekistan Uzbekistan 1.04 -6.6% 15
St. Vincent & Grenadines St. Vincent & Grenadines 0.105 +0.142% 174
Vietnam Vietnam 0.984 +9.25% 19
Vanuatu Vanuatu 0.338 +4.43% 87
Samoa Samoa 0.537 -5.3% 48
Yemen Yemen 0.322 -0.62% 91
South Africa South Africa 1.09 -3.61% 12
Zambia Zambia 0.292 -2.03% 106
Zimbabwe Zimbabwe 0.507 +1.7% 55

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CO2.RT.GDP.KD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CO2.RT.GDP.KD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))