Carbon intensity of GDP (kg CO2e per 2021 PPP $ of GDP)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.122 +1.12% 98
Afghanistan Afghanistan 0.106 +3.08% 118
Angola Angola 0.106 +2.11% 117
Albania Albania 0.0929 -4.15% 136
United Arab Emirates United Arab Emirates 0.287 -3.92% 24
Argentina Argentina 0.149 -3.46% 79
Armenia Armenia 0.134 -2.14% 91
Antigua & Barbuda Antigua & Barbuda 0.122 +2.92% 99
Australia Australia 0.232 -3.65% 37
Austria Austria 0.1 -3.01% 127
Azerbaijan Azerbaijan 0.198 +7.02% 52
Burundi Burundi 0.0744 -2.05% 155
Belgium Belgium 0.114 -7.17% 108
Benin Benin 0.123 -8.55% 97
Burkina Faso Burkina Faso 0.105 -5.16% 121
Bangladesh Bangladesh 0.0883 -4.91% 141
Bulgaria Bulgaria 0.186 -22% 58
Bahrain Bahrain 0.41 -0.718% 12
Bahamas Bahamas 0.12 +2.32% 100
Bosnia & Herzegovina Bosnia & Herzegovina 0.349 -5.05% 17
Belarus Belarus 0.212 -8.44% 43
Belize Belize 0.0544 +5.21% 171
Bermuda Bermuda 0.0526 +0.503% 176
Bolivia Bolivia 0.198 +1.57% 53
Brazil Brazil 0.119 -3.02% 101
Barbados Barbados 0.147 +0.67% 82
Brunei Brunei 0.276 +1.69% 25
Bhutan Bhutan 0.173 -1.69% 67
Botswana Botswana 0.158 -1.22% 73
Central African Republic Central African Republic 0.0631 +3.7% 167
Canada Canada 0.249 -1.56% 31
Switzerland Switzerland 0.0468 -1.23% 180
Chile Chile 0.145 -5.94% 85
China China 0.414 +0.413% 11
Côte d’Ivoire Côte d’Ivoire 0.071 -8.29% 159
Cameroon Cameroon 0.0778 -3.78% 150
Congo - Kinshasa Congo - Kinshasa 0.0247 -10.1% 185
Congo - Brazzaville Congo - Brazzaville 0.19 -7.83% 56
Colombia Colombia 0.105 +9.14% 122
Comoros Comoros 0.106 -2.82% 115
Cape Verde Cape Verde 0.208 -7.93% 45
Costa Rica Costa Rica 0.0646 +0.82% 165
Cayman Islands Cayman Islands 0.0628 +1.04% 169
Cyprus Cyprus 0.148 -2.72% 80
Czechia Czechia 0.175 -8.92% 64
Germany Germany 0.111 -11.4% 112
Djibouti Djibouti 0.0993 -6.78% 128
Dominica Dominica 0.0657 +1.69% 164
Denmark Denmark 0.063 -7.18% 168
Dominican Republic Dominican Republic 0.119 +3.49% 103
Algeria Algeria 0.258 -7.17% 29
Ecuador Ecuador 0.176 +5.17% 63
Egypt Egypt 0.13 -2.78% 93
Spain Spain 0.0949 -10.1% 135
Estonia Estonia 0.2 -6.32% 51
Ethiopia Ethiopia 0.0471 -5.23% 179
Finland Finland 0.103 -9.89% 124
Fiji Fiji 0.175 -3.87% 65
France France 0.0766 -9.87% 152
Faroe Islands Faroe Islands 0.000548 -2.43% 186
Micronesia (Federated States of) Micronesia (Federated States of) 0 187
Gabon Gabon 0.106 -10.9% 116
United Kingdom United Kingdom 0.084 -8.11% 142
Georgia Georgia 0.153 -5.58% 76
Ghana Ghana 0.105 -5.49% 120
Guinea Guinea 0.0661 -7.57% 163
Gambia Gambia 0.0766 -7.38% 151
Guinea-Bissau Guinea-Bissau 0.0613 -7.09% 170
Equatorial Guinea Equatorial Guinea 0.13 -4.37% 94
Greece Greece 0.135 -8.08% 90
Grenada Grenada 0.0712 +0.754% 158
Greenland Greenland 0.144 +0.243% 86
Guatemala Guatemala 0.0951 +3.22% 134
Guyana Guyana 0.0811 -25.7% 148
Hong Kong SAR China Hong Kong SAR China 0.0714 +2.96% 157
Honduras Honduras 0.159 +2.32% 72
Croatia Croatia 0.11 -3.12% 114
Haiti Haiti 0.103 +6.24% 123
Hungary Hungary 0.113 -7.15% 109
Indonesia Indonesia 0.173 -2.22% 66
India India 0.221 -1.25% 39
Ireland Ireland 0.053 -1.01% 175
Iran Iran 0.54 -2.52% 4
Iraq Iraq 0.324 +0.756% 20
Iceland Iceland 0.117 -10.1% 105
Israel Israel 0.131 -4.29% 92
Italy Italy 0.0982 -8.85% 130
Jamaica Jamaica 0.234 +5.05% 36
Jordan Jordan 0.22 +2.61% 41
Japan Japan 0.165 -7.82% 70
Kazakhstan Kazakhstan 0.34 -4.99% 19
Kenya Kenya 0.0691 -3.74% 162
Kyrgyzstan Kyrgyzstan 0.224 -6.91% 38
Cambodia Cambodia 0.154 -1.39% 75
Kiribati Kiribati 0.234 +0.726% 35
St. Kitts & Nevis St. Kitts & Nevis 0.082 +1.04% 146
South Korea South Korea 0.22 -3.74% 40
Kuwait Kuwait 0.481 +3.77% 8
Laos Laos 0.405 +2.16% 13
Lebanon Lebanon 0.265 +3.52% 27
Liberia Liberia 0.184 -6.92% 60
Libya Libya 0.672 -2.52% 2
St. Lucia St. Lucia 0.0707 +3.2% 160
Sri Lanka Sri Lanka 0.0715 +5.14% 156
Lesotho Lesotho 0.146 +1.26% 83
Lithuania Lithuania 0.0989 -0.61% 129
Luxembourg Luxembourg 0.0815 -2.84% 147
Latvia Latvia 0.0899 -4.33% 139
Macao SAR China Macao SAR China 0.0423 -41.1% 181
Morocco Morocco 0.206 -3.9% 47
Moldova Moldova 0.253 +3.74% 30
Madagascar Madagascar 0.0806 -1.41% 149
Maldives Maldives 0.245 -1.23% 33
Mexico Mexico 0.171 +1.2% 68
Marshall Islands Marshall Islands 0 187
North Macedonia North Macedonia 0.205 +2.41% 48
Mali Mali 0.0982 -7.08% 131
Malta Malta 0.0514 -10.3% 177
Myanmar (Burma) Myanmar (Burma) 0.115 +2.03% 107
Mongolia Mongolia 0.498 +1.1% 6
Mozambique Mozambique 0.192 -7.88% 55
Mauritania Mauritania 0.148 -8.65% 81
Mauritius Mauritius 0.128 -0.9% 95
Malawi Malawi 0.185 +6.39% 59
Malaysia Malaysia 0.246 -0.272% 32
Namibia Namibia 0.145 -1.78% 84
Niger Niger 0.0639 -4.42% 166
Nigeria Nigeria 0.1 -4.4% 126
Nicaragua Nicaragua 0.112 +1.45% 111
Netherlands Netherlands 0.0973 -7.66% 132
Norway Norway 0.0886 -1.17% 140
Nepal Nepal 0.124 +2.11% 96
Nauru Nauru 0 187
New Zealand New Zealand 0.139 +2.03% 88
Oman Oman 0.489 +1.13% 7
Pakistan Pakistan 0.149 -8.27% 78
Panama Panama 0.0921 +14.2% 138
Peru Peru 0.113 +2.86% 110
Philippines Philippines 0.142 +1.47% 87
Palau Palau 5.14 +1.07% 1
Papua New Guinea Papua New Guinea 0.136 -1.36% 89
Poland Poland 0.179 -9.8% 62
Puerto Rico Puerto Rico 0.101 +8.81% 125
Portugal Portugal 0.0823 -10.8% 145
Paraguay Paraguay 0.0762 -3.89% 153
Qatar Qatar 0.415 +6.47% 10
Romania Romania 0.0921 -9.04% 137
Russia Russia 0.355 -1.82% 16
Rwanda Rwanda 0.0385 -6.27% 183
Saudi Arabia Saudi Arabia 0.287 +2.36% 23
Sudan Sudan 0.195 +40.9% 54
Senegal Senegal 0.155 -6.67% 74
Singapore Singapore 0.0744 +0.521% 154
Solomon Islands Solomon Islands 0.207 +0.732% 46
Sierra Leone Sierra Leone 0.0418 -7.8% 182
El Salvador El Salvador 0.116 +2.21% 106
Somalia Somalia 0.0337 -3.82% 184
São Tomé & Príncipe São Tomé & Príncipe 0.167 +4.1% 69
Suriname Suriname 0.219 +0.957% 42
Slovakia Slovakia 0.163 -4.03% 71
Slovenia Slovenia 0.119 -9.94% 102
Sweden Sweden 0.0534 -2.14% 172
Eswatini Eswatini 0.111 -0.643% 113
Seychelles Seychelles 0.361 +0.621% 15
Syria Syria 0.259 +2.43% 28
Turks & Caicos Islands Turks & Caicos Islands 0.0701 -7.31% 161
Chad Chad 0.0504 -1.49% 178
Togo Togo 0.0968 -7.41% 133
Thailand Thailand 0.18 -2.59% 61
Tajikistan Tajikistan 0.2 -6.41% 50
Turkmenistan Turkmenistan 0.502 -6.82% 5
Timor-Leste Timor-Leste 0.117 +20.6% 104
Tonga Tonga 0.297 +1.32% 21
Trinidad & Tobago Trinidad & Tobago 0.638 -3.9% 3
Tunisia Tunisia 0.205 +3.37% 49
Turkey Turkey 0.15 -3.86% 77
Tuvalu Tuvalu 0 187
Tanzania Tanzania 0.0829 -2.86% 144
Uganda Uganda 0.0531 -5.11% 174
Ukraine Ukraine 0.243 -6.71% 34
Uruguay Uruguay 0.0838 +0.482% 143
United States United States 0.187 -4.93% 57
Uzbekistan Uzbekistan 0.386 -6.6% 14
St. Vincent & Grenadines St. Vincent & Grenadines 0.0532 +0.142% 173
Vietnam Vietnam 0.274 +9.25% 26
Vanuatu Vanuatu 0.288 +4.43% 22
Samoa Samoa 0.341 -5.3% 18
South Africa South Africa 0.459 -3.61% 9
Zambia Zambia 0.106 -2.03% 119
Zimbabwe Zimbabwe 0.209 +1.7% 44

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CO2.RT.GDP.PP.KD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CO2.RT.GDP.PP.KD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))