Carbon dioxide (CO2) emissions (total) excluding LULUCF (% change from 1990)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 164 +9.05% 92
Afghanistan Afghanistan 198 +8.38% 77
Angola Angola 151 +5.44% 97
Albania Albania -30.9 +0.845% 172
United Arab Emirates United Arab Emirates 262 -0.605% 60
Argentina Argentina 83.4 -10.4% 119
Armenia Armenia -62.8 -3.23% 193
American Samoa American Samoa 0 144
Antigua & Barbuda Antigua & Barbuda 97.4 +11.6% 116
Australia Australia 34.5 -1.3% 133
Austria Austria -4.46 +718% 147
Azerbaijan Azerbaijan -23.8 -20% 163
Burundi Burundi 321 +0.735% 46
Belgium Belgium -27.2 +20.8% 167
Benin Benin 1,521 -2.91% 13
Burkina Faso Burkina Faso 1,739 -2.49% 10
Bangladesh Bangladesh 745 +0.655% 18
Bulgaria Bulgaria -50.3 +34.3% 187
Bahrain Bahrain 212 +4.68% 71
Bahamas Bahamas 55 +17% 125
Bosnia & Herzegovina Bosnia & Herzegovina -10.5 +38.5% 151
Belarus Belarus -48.7 +5.44% 185
Belize Belize 122 +12.3% 106
Bermuda Bermuda 38.8 +22.7% 131
Bolivia Bolivia 262 +6.62% 61
Brazil Brazil 111 +0.234% 111
Barbados Barbados 29.3 +25.2% 137
Brunei Brunei 126 +5.2% 104
Bhutan Bhutan 996 +3.44% 14
Botswana Botswana 163 +3.18% 93
Central African Republic Central African Republic 132 +8.05% 102
Canada Canada 30.5 -0.229% 136
Switzerland Switzerland -23.6 +1.84% 162
Chile Chile 153 -8.71% 96
China China 449 +7.25% 31
Côte d’Ivoire Côte d’Ivoire 385 -2.98% 37
Cameroon Cameroon 126 -1.17% 103
Congo - Kinshasa Congo - Kinshasa 12.8 -17.7% 141
Congo - Brazzaville Congo - Brazzaville 204 -8.79% 76
Colombia Colombia 89.2 +23.7% 117
Comoros Comoros 708 +0.18% 20
Cape Verde Cape Verde 1,774 -3.13% 9
Costa Rica Costa Rica 194 +9.34% 79
Cuba Cuba -42.9 -6.85% 182
Cayman Islands Cayman Islands 211 +8.24% 72
Cyprus Cyprus 54.9 -0.0785% 126
Czechia Czechia -45.3 +13.5% 183
Germany Germany -42.5 +21.7% 179
Djibouti Djibouti -23 -0.312% 161
Dominica Dominica 275 +7.52% 58
Denmark Denmark -48.9 +5.64% 186
Dominican Republic Dominican Republic 290 +7.9% 53
Algeria Algeria 150 -5.49% 98
Ecuador Ecuador 158 +12.4% 95
Egypt Egypt 172 +1.39% 90
Eritrea Eritrea 103 +0.325% 114
Spain Spain -6.28 -499% 149
Estonia Estonia -71 +4.28% 196
Ethiopia Ethiopia 664 +1.17% 23
Finland Finland -42.6 +19.4% 181
Fiji Fiji 118 +6.4% 107
France France -26.7 +37.5% 166
Faroe Islands Faroe Islands 31.3 0% 135
Gabon Gabon -20.2 +60.3% 157
United Kingdom United Kingdom -48.1 +9.95% 184
Georgia Georgia -62.7 -1.05% 192
Ghana Ghana 672 -2.89% 22
Gibraltar Gibraltar 379 +2.56% 39
Guinea Guinea 293 -3.26% 51
Gambia Gambia 395 -3.65% 35
Guinea-Bissau Guinea-Bissau 105 -5.59% 113
Equatorial Guinea Equatorial Guinea 5,212 -9.4% 4
Greece Greece -33.7 +14.2% 175
Grenada Grenada 181 +8.76% 85
Greenland Greenland 52,827 +1.11% 1
Guatemala Guatemala 445 +8.54% 32
Guam Guam 100 0% 115
Guyana Guyana 182 -0.838% 84
Hong Kong SAR China Hong Kong SAR China -1.06 -84.6% 145
Honduras Honduras 365 +7.74% 41
Croatia Croatia -30 -0.187% 171
Haiti Haiti 210 +6.42% 74
Hungary Hungary -39.4 +15.3% 177
Indonesia Indonesia 317 +3.61% 49
India India 392 +10% 36
Ireland Ireland 0.452 -93.9% 143
Iran Iran 274 +3.31% 59
Iraq Iraq 178 +2.01% 88
Iceland Iceland 31.8 -18% 134
Israel Israel 73.9 -5.79% 121
Italy Italy -28.4 +29.1% 170
Jamaica Jamaica -10.5 -38.2% 150
Jordan Jordan 134 +10.1% 101
Japan Japan -19 +41.6% 155
Kazakhstan Kazakhstan -3.52 +4.2% 146
Kenya Kenya 236 +2.31% 66
Kyrgyzstan Kyrgyzstan -55.8 -1.15% 189
Cambodia Cambodia 4,057 +3.64% 5
Kiribati Kiribati 480 +4.13% 27
St. Kitts & Nevis St. Kitts & Nevis 474 +6.63% 28
South Korea South Korea 111 -4.52% 112
Kuwait Kuwait 244 +2.9% 65
Laos Laos 10,001 +6.05% 3
Lebanon Lebanon 190 +4.23% 81
Liberia Liberia 337 -3.3% 45
Libya Libya 87.7 +17.3% 118
St. Lucia St. Lucia 319 +7.32% 48
Sri Lanka Sri Lanka 384 +3.42% 38
Lesotho Lesotho 708 +3.57% 21
Lithuania Lithuania -62.7 +0.162% 191
Luxembourg Luxembourg -41.5 +5.42% 178
Latvia Latvia -66.6 +0.824% 194
Macao SAR China Macao SAR China 217 +4.68% 70
Morocco Morocco 211 -0.917% 73
Moldova Moldova -68.8 -2.11% 195
Madagascar Madagascar 352 +3.54% 43
Maldives Maldives 2,921 +3.56% 6
Mexico Mexico 68.2 +12% 124
North Macedonia North Macedonia -21.7 -13.5% 158
Mali Mali 1,991 -2.83% 7
Malta Malta -27.4 +13.3% 169
Myanmar (Burma) Myanmar (Burma) 653 +3.49% 25
Mongolia Mongolia 114 +17.5% 109
Mozambique Mozambique 738 -3.25% 19
Mauritania Mauritania 559 -3.17% 26
Mauritius Mauritius 255 +5.75% 63
Malawi Malawi 320 +11.3% 47
Malaysia Malaysia 340 +4.28% 44
Namibia Namibia 250 +3.65% 64
New Caledonia New Caledonia 293 +7.6% 52
Niger Niger 354 -3.6% 42
Nigeria Nigeria 70.3 -3.94% 122
Nicaragua Nicaragua 192 +9.34% 80
Netherlands Netherlands -25.5 +31.7% 165
Norway Norway 21.4 -5.95% 140
Nepal Nepal 1,548 +4.41% 12
New Zealand New Zealand 43.9 +12.3% 130
Oman Oman 467 +2.85% 29
Pakistan Pakistan 206 -11.9% 75
Panama Panama 442 +29.3% 33
Peru Peru 180 +3.85% 87
Philippines Philippines 279 +9.86% 56
Palau Palau -33.2 -5.48% 174
Papua New Guinea Papua New Guinea 175 +3.82% 89
Poland Poland -22.8 +56% 160
Puerto Rico Puerto Rico -27.4 -18.5% 168
North Korea North Korea -51.3 -6.63% 188
Portugal Portugal -17.9 +73.3% 154
Paraguay Paraguay 278 +1.25% 57
French Polynesia French Polynesia 47.6 +11.4% 128
Qatar Qatar 653 +9.02% 24
Romania Romania -62.3 +4.66% 190
Russia Russia -15.1 -10.8% 152
Rwanda Rwanda 198 +2.23% 78
Saudi Arabia Saudi Arabia 258 +4.09% 62
Sudan Sudan 284 -0.818% 54
Senegal Senegal 408 -3.34% 34
Singapore Singapore 80.3 +5.44% 120
Solomon Islands Solomon Islands 162 +5.63% 94
Sierra Leone Sierra Leone 70.2 -5.94% 123
El Salvador El Salvador 223 +8.67% 69
Somalia Somalia 38.3 +0.839% 132
São Tomé & Príncipe São Tomé & Príncipe 456 +5.53% 30
Suriname Suriname 140 +6.2% 100
Slovakia Slovakia -42.5 +2.76% 180
Slovenia Slovenia -19.4 +56.9% 156
Sweden Sweden -38.1 +3.9% 176
Eswatini Eswatini 25.8 +15.2% 139
Seychelles Seychelles 366 +3.71% 40
Syria Syria -22.4 -3.92% 159
Turks & Caicos Islands Turks & Caicos Islands 1,962 +5.71% 8
Chad Chad 994 +2.83% 15
Togo Togo 230 -2.11% 67
Thailand Thailand 187 -0.947% 82
Tajikistan Tajikistan -24.5 -3.96% 164
Turkmenistan Turkmenistan 44.4 -3.02% 129
Timor-Leste Timor-Leste 41,247 -1.3% 2
Tonga Tonga 145 +5.93% 99
Trinidad & Tobago Trinidad & Tobago 115 -4.64% 108
Tunisia Tunisia 113 +6.63% 110
Turkey Turkey 182 +1.64% 83
Tanzania Tanzania 830 +2.32% 16
Uganda Uganda 769 -0.0563% 17
Ukraine Ukraine -82.7 +0.33% 197
Uruguay Uruguay 124 +2.24% 105
United States United States -6.06 +53% 148
Uzbekistan Uzbekistan 7.86 -9.15% 142
St. Vincent & Grenadines St. Vincent & Grenadines 230 +8.05% 68
Venezuela Venezuela -17.5 -27.3% 153
British Virgin Islands British Virgin Islands 311 +7.34% 50
U.S. Virgin Islands U.S. Virgin Islands 0 144
Vietnam Vietnam 1,713 +15.8% 11
Vanuatu Vanuatu 180 +5.42% 86
Samoa Samoa 279 +4.71% 55
Yemen Yemen 53.3 -7.15% 127
South Africa South Africa 26.5 -12.6% 138
Zambia Zambia 166 +5.27% 91
Zimbabwe Zimbabwe -32.5 -12.1% 173

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CO2.ZG.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CO2.ZG.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))