Carbon dioxide (CO2) emissions from Transport (Energy) (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.186 +6.58% 177
Afghanistan Afghanistan 2.34 +4.18% 125
Angola Angola 8.5 +4.47% 73
Albania Albania 1.68 +0.827% 133
United Arab Emirates United Arab Emirates 43.4 +3.08% 29
Argentina Argentina 47.4 -3.69% 26
Armenia Armenia 2.47 +3.77% 118
Antigua & Barbuda Antigua & Barbuda 0.114 +6.57% 183
Australia Australia 95.7 +7.24% 17
Austria Austria 21.1 -0.237% 41
Azerbaijan Azerbaijan 8.32 +3.12% 75
Burundi Burundi 0.406 +0.173% 166
Belgium Belgium 22 -5.03% 39
Benin Benin 4.28 -3.1% 99
Burkina Faso Burkina Faso 2.73 -2.9% 111
Bangladesh Bangladesh 11.6 -12.1% 62
Bulgaria Bulgaria 9.41 -1.35% 69
Bahrain Bahrain 3.52 +0.345% 105
Bahamas Bahamas 0.591 +6.54% 158
Bosnia & Herzegovina Bosnia & Herzegovina 4.4 +1.5% 98
Belarus Belarus 9.68 +0.535% 67
Belize Belize 0.095 +7.71% 187
Bermuda Bermuda 0.123 +6.48% 181
Bolivia Bolivia 11.9 +2.77% 61
Brazil Brazil 217 +2% 5
Barbados Barbados 0.248 +6.53% 170
Brunei Brunei 1.24 +2.71% 142
Bhutan Bhutan 0.428 +4.19% 165
Botswana Botswana 2.39 +3.12% 121
Central African Republic Central African Republic 0.205 +4.5% 175
Canada Canada 166 +1.28% 7
Switzerland Switzerland 14.7 +1.52% 54
Chile Chile 31.9 +2.4% 34
China China 1,078 +16% 2
Côte d’Ivoire Côte d’Ivoire 5.16 -3.03% 90
Cameroon Cameroon 4.27 +4.57% 100
Congo - Kinshasa Congo - Kinshasa 2.77 +2.98% 110
Congo - Brazzaville Congo - Brazzaville 1.46 +4.67% 136
Colombia Colombia 36.7 +1.68% 32
Comoros Comoros 0.181 +0.166% 178
Cape Verde Cape Verde 0.575 -2.91% 159
Costa Rica Costa Rica 6.07 +6.34% 87
Cuba Cuba 1.22 +5.1% 143
Cayman Islands Cayman Islands 0.126 +6.6% 180
Cyprus Cyprus 1.88 -0.17% 129
Czechia Czechia 19.4 +0.355% 43
Germany Germany 140 -5.41% 10
Djibouti Djibouti 0.347 +0.173% 167
Dominica Dominica 0.0276 +6.56% 193
Denmark Denmark 11.2 +0.712% 64
Dominican Republic Dominican Republic 8.38 +5.08% 74
Algeria Algeria 46.6 +4.69% 27
Ecuador Ecuador 21.9 +7.15% 40
Egypt Egypt 51.9 -1.6% 24
Eritrea Eritrea 0.211 +0.334% 174
Spain Spain 92.1 -0.894% 19
Estonia Estonia 2.36 -4.27% 124
Ethiopia Ethiopia 6.64 +0.0739% 84
Finland Finland 8.96 -7.27% 71
Fiji Fiji 1.11 +4.18% 145
France France 122 -0.936% 13
Gabon Gabon 0.213 +4.87% 173
United Kingdom United Kingdom 108 +1.38% 14
Georgia Georgia 4.44 +2.02% 96
Ghana Ghana 9.04 -3.05% 70
Gibraltar Gibraltar 0.556 +1.5% 160
Guinea Guinea 1.75 -2.9% 131
Gambia Gambia 0.344 -2.91% 168
Guinea-Bissau Guinea-Bissau 0.196 -2.88% 176
Equatorial Guinea Equatorial Guinea 0.532 +4.97% 161
Greece Greece 17.6 -0.288% 47
Grenada Grenada 0.0501 +6.6% 188
Greenland Greenland 0.0957 +0.314% 186
Guatemala Guatemala 11.5 +6.29% 63
Guyana Guyana 1.04 +0.98% 147
Hong Kong SAR China Hong Kong SAR China 6.45 +24.2% 85
Honduras Honduras 4.96 +6.41% 92
Croatia Croatia 6.89 +2.2% 82
Haiti Haiti 1.45 +4.86% 137
Hungary Hungary 14.3 -2.94% 55
Indonesia Indonesia 150 +1.34% 8
India India 340 +4.99% 3
Ireland Ireland 11.1 -1.28% 65
Iran Iran 139 -1.18% 11
Iraq Iraq 40 +6.11% 30
Iceland Iceland 0.897 -5.62% 148
Israel Israel 18.4 -1.4% 45
Italy Italy 103 -1.24% 16
Jamaica Jamaica 2.41 +5.03% 120
Jordan Jordan 7.87 +0.0254% 77
Japan Japan 180 -3.73% 6
Kazakhstan Kazakhstan 23.6 +6.1% 37
Kenya Kenya 10.6 +0.19% 66
Kyrgyzstan Kyrgyzstan 1.72 +0.651% 132
Cambodia Cambodia 7.36 +2.55% 79
Kiribati Kiribati 0.0498 +4.18% 189
St. Kitts & Nevis St. Kitts & Nevis 0.0417 +6.38% 190
South Korea South Korea 106 -0.434% 15
Kuwait Kuwait 15.1 -1.03% 52
Laos Laos 2.69 +2.74% 113
Lebanon Lebanon 7.06 -0.0142% 81
Liberia Liberia 0.81 -2.9% 151
Libya Libya 18.5 -0.538% 44
St. Lucia St. Lucia 0.104 +6.54% 185
Sri Lanka Sri Lanka 9.44 +9.79% 68
Lesotho Lesotho 0.499 +3.12% 163
Lithuania Lithuania 6.2 +1.61% 86
Luxembourg Luxembourg 4.2 -2.97% 101
Latvia Latvia 3.06 -0.166% 108
Macao SAR China Macao SAR China 1.38 +4.18% 138
Morocco Morocco 17.4 -0.776% 48
Moldova Moldova 2.36 +0.756% 122
Madagascar Madagascar 1.36 -0.294% 139
Maldives Maldives 1.47 +4.18% 135
Mexico Mexico 130 +1.69% 12
North Macedonia North Macedonia 2.49 +1.05% 117
Mali Mali 3.32 -2.9% 107
Malta Malta 0.723 -2.24% 154
Myanmar (Burma) Myanmar (Burma) 5.36 +3.23% 89
Mongolia Mongolia 2.91 +2.89% 109
Mozambique Mozambique 3.93 +0.12% 103
Mauritania Mauritania 2.43 -2.9% 119
Mauritius Mauritius 1.14 -0.0874% 144
Malawi Malawi 0.767 +0.17% 152
Malaysia Malaysia 66.3 +12% 22
Namibia Namibia 2.15 +2.69% 127
New Caledonia New Caledonia 1.86 +4.18% 130
Niger Niger 1.27 -2.98% 141
Nigeria Nigeria 57.9 -3.06% 23
Nicaragua Nicaragua 2.72 +6.76% 112
Netherlands Netherlands 25.5 +2.21% 35
Norway Norway 13.5 -1.78% 56
Nepal Nepal 4.76 +3.29% 95
New Zealand New Zealand 16 +7.64% 50
Oman Oman 12.2 +2.7% 58
Pakistan Pakistan 43.4 -19.8% 28
Panama Panama 5.65 +6.98% 88
Peru Peru 24 +3.65% 36
Philippines Philippines 36.5 +4.61% 33
Palau Palau 0.756 +3.24% 153
Papua New Guinea Papua New Guinea 2.59 +4.18% 115
Poland Poland 67.9 +0.292% 21
Puerto Rico Puerto Rico 2.2 +7.07% 126
North Korea North Korea 4.93 +7.05% 93
Portugal Portugal 15.8 -3.89% 51
Paraguay Paraguay 7.17 +0.934% 80
French Polynesia French Polynesia 0.645 +4.18% 156
Qatar Qatar 14.8 +5.01% 53
Romania Romania 20.8 +0.147% 42
Russia Russia 262 +1.44% 4
Rwanda Rwanda 0.596 +0.0336% 157
Saudi Arabia Saudi Arabia 145 +4.62% 9
Sudan Sudan 12.1 +0.224% 59
Senegal Senegal 3.43 -3.12% 106
Singapore Singapore 6.71 +11.3% 83
Solomon Islands Solomon Islands 0.214 +4.18% 172
Sierra Leone Sierra Leone 0.526 -2.9% 162
El Salvador El Salvador 4.41 +6.28% 97
Somalia Somalia 0.479 +0.167% 164
São Tomé & Príncipe São Tomé & Príncipe 0.122 +4.46% 182
Suriname Suriname 0.838 +0.927% 150
Slovakia Slovakia 7.58 +0.519% 78
Slovenia Slovenia 4.78 -11.3% 94
Sweden Sweden 13.3 -2.2% 57
Eswatini Eswatini 0.853 +3.1% 149
Seychelles Seychelles 0.706 +3.02% 155
Syria Syria 4.97 +0.734% 91
Turks & Caicos Islands Turks & Caicos Islands 0.0362 +6.47% 191
Chad Chad 1.07 +4.5% 146
Togo Togo 1.31 -1.58% 140
Thailand Thailand 79.8 +1.15% 20
Tajikistan Tajikistan 1.96 +0.549% 128
Turkmenistan Turkmenistan 12.1 -0.636% 60
Timor-Leste Timor-Leste 0.342 +4.21% 169
Tonga Tonga 0.113 +4.16% 184
Trinidad & Tobago Trinidad & Tobago 2.51 +3.34% 116
Tunisia Tunisia 8.15 +0.39% 76
Turkey Turkey 95 +5.47% 18
Tanzania Tanzania 8.91 +0.381% 72
Uganda Uganda 3.55 -0.203% 104
Ukraine Ukraine 22.2 +2.08% 38
Uruguay Uruguay 4.02 +1.08% 102
United States United States 1,711 +0.66% 1
Uzbekistan Uzbekistan 16.3 -1.77% 49
St. Vincent & Grenadines St. Vincent & Grenadines 0.0338 +6.62% 192
Venezuela Venezuela 17.7 +30.4% 46
British Virgin Islands British Virgin Islands 0.0265 +6.85% 194
Vietnam Vietnam 39.3 +12.2% 31
Vanuatu Vanuatu 0.147 +4.18% 179
Samoa Samoa 0.24 +4.17% 171
Yemen Yemen 2.65 -0.0151% 114
South Africa South Africa 49.4 +2.66% 25
Zambia Zambia 2.36 +0.0339% 123
Zimbabwe Zimbabwe 1.48 +0.285% 134

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CO2.TR.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CO2.TR.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))