Carbon dioxide (CO2) emissions from Power Industry (Energy) (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.264 +4.85% 152
Afghanistan Afghanistan 2.13 +5.27% 107
Angola Angola 4.54 +1.66% 88
Albania Albania 0 193
United Arab Emirates United Arab Emirates 65.3 -4.97% 24
Argentina Argentina 39.4 -12.9% 35
Armenia Armenia 1.67 +8.74% 115
Antigua & Barbuda Antigua & Barbuda 0.161 +4.83% 161
Australia Australia 155 -3.55% 13
Austria Austria 10.2 -7.89% 67
Azerbaijan Azerbaijan 15.4 +10.7% 55
Burundi Burundi 0.141 +0.0712% 164
Belgium Belgium 13.6 -8.59% 59
Benin Benin 0.498 -3.09% 140
Burkina Faso Burkina Faso 0.945 -3.11% 129
Bangladesh Bangladesh 57 -2.26% 26
Bulgaria Bulgaria 17 -35.5% 49
Bahrain Bahrain 23.8 +4.07% 43
Bahamas Bahamas 0.836 +4.87% 133
Bosnia & Herzegovina Bosnia & Herzegovina 12.1 -5.51% 62
Belarus Belarus 25.2 -8.24% 41
Belize Belize 0.136 +6.25% 165
Bermuda Bermuda 0.174 +4.87% 158
Bolivia Bolivia 3.82 +10.5% 94
Brazil Brazil 47.8 -5.36% 30
Barbados Barbados 0.351 +4.85% 145
Brunei Brunei 4.61 +4.01% 87
Bhutan Bhutan 0.295 +4.79% 148
Botswana Botswana 3.85 +1.27% 93
Central African Republic Central African Republic 0.0712 +4.4% 173
Canada Canada 73.9 -0.444% 23
Switzerland Switzerland 2.52 -1.23% 103
Chile Chile 23.6 -18.5% 45
China China 6,473 +6.23% 1
Côte d’Ivoire Côte d’Ivoire 3.55 -3.08% 96
Cameroon Cameroon 1.9 -7.5% 109
Congo - Kinshasa Congo - Kinshasa 0.0022 +4.76% 191
Congo - Brazzaville Congo - Brazzaville 1.95 -11.4% 108
Colombia Colombia 14.9 +20.3% 56
Comoros Comoros 0.0625 0% 178
Cape Verde Cape Verde 0.199 -3.11% 154
Costa Rica Costa Rica 0.005 +6.38% 188
Cuba Cuba 11.2 +6.03% 65
Cayman Islands Cayman Islands 0.178 +4.89% 157
Cyprus Cyprus 3.09 -0.2% 100
Czechia Czechia 39.9 -14.7% 34
Germany Germany 178 -22.7% 10
Djibouti Djibouti 0.12 +0.0833% 167
Dominica Dominica 0.0391 +5.11% 185
Denmark Denmark 4.85 -19.9% 82
Dominican Republic Dominican Republic 13.2 +7.59% 60
Algeria Algeria 42.8 -7.84% 33
Ecuador Ecuador 4.84 +4.59% 83
Egypt Egypt 89.3 +1.58% 19
Eritrea Eritrea 0.308 +0.0325% 147
Spain Spain 31.3 -26.9% 38
Estonia Estonia 4.21 -18.4% 90
Ethiopia Ethiopia 0.0043 0% 189
Finland Finland 8.97 -18.3% 69
Fiji Fiji 0.497 +2.71% 141
France France 23.9 -37.5% 42
Gabon Gabon 1.19 -4.53% 122
United Kingdom United Kingdom 53.9 -21.8% 27
Georgia Georgia 1.1 +4.3% 125
Ghana Ghana 8.04 -3.09% 73
Gibraltar Gibraltar 0.132 +4.27% 166
Guinea Guinea 0.608 -3.11% 139
Gambia Gambia 0.119 -3.09% 168
Guinea-Bissau Guinea-Bissau 0.0679 -3% 175
Equatorial Guinea Equatorial Guinea 0.476 -13.1% 143
Greece Greece 14.8 -15.8% 57
Grenada Grenada 0.0709 +4.88% 174
Greenland Greenland 0.0932 +1.53% 172
Guatemala Guatemala 3.47 +13.6% 98
Guyana Guyana 0.905 +8.15% 130
Hong Kong SAR China Hong Kong SAR China 23.7 +1.44% 44
Honduras Honduras 3.53 +6.42% 97
Croatia Croatia 2.51 -7.17% 104
Haiti Haiti 0.879 +4.87% 131
Hungary Hungary 7.64 -18% 74
Indonesia Indonesia 270 +5.99% 6
India India 1,377 +8.79% 3
Ireland Ireland 8.44 -12.3% 71
Iran Iran 171 +1.35% 11
Iraq Iraq 62.9 +4.02% 25
Iceland Iceland 0.0029 -6.45% 190
Israel Israel 31.7 -4.27% 37
Italy Italy 84.1 -16.5% 20
Jamaica Jamaica 2.44 +13.5% 106
Jordan Jordan 8.13 +3.67% 72
Japan Japan 398 -8.07% 5
Kazakhstan Kazakhstan 110 -1.63% 18
Kenya Kenya 1.13 +0.0355% 124
Kyrgyzstan Kyrgyzstan 2.64 +2.04% 102
Cambodia Cambodia 4.54 +8.16% 89
Kiribati Kiribati 0.0223 +2.76% 187
St. Kitts & Nevis St. Kitts & Nevis 0.059 +4.8% 179
South Korea South Korea 248 -2.46% 8
Kuwait Kuwait 50.9 +1.31% 28
Laos Laos 16.3 +8.83% 51
Lebanon Lebanon 7.55 -0.0146% 75
Liberia Liberia 0.281 -3.1% 150
Libya Libya 21.1 +5.98% 46
St. Lucia St. Lucia 0.147 +4.91% 163
Sri Lanka Sri Lanka 7.11 -6% 76
Lesotho Lesotho 0.174 +3.09% 159
Lithuania Lithuania 1.21 +0.899% 121
Luxembourg Luxembourg 0.189 -3.77% 155
Latvia Latvia 0.968 -5.41% 128
Macao SAR China Macao SAR China 0.743 +2.41% 134
Morocco Morocco 28.9 -1.89% 39
Moldova Moldova 3.99 +8.61% 91
Madagascar Madagascar 1.69 +4.19% 113
Maldives Maldives 0.659 +2.7% 137
Mexico Mexico 165 +9.67% 12
North Macedonia North Macedonia 3.97 +8.06% 92
Mali Mali 1.15 -3.1% 123
Malta Malta 0.737 -6.9% 136
Myanmar (Burma) Myanmar (Burma) 8.73 +3.49% 70
Mongolia Mongolia 16.4 +8.67% 50
Mozambique Mozambique 1.63 +2.81% 117
Mauritania Mauritania 0.842 -3.11% 132
Mauritius Mauritius 2.47 +6.82% 105
Malawi Malawi 1.72 +9.63% 112
Malaysia Malaysia 117 +3.41% 17
Namibia Namibia 0.0638 +1.11% 177
New Caledonia New Caledonia 1.5 +5.34% 118
Niger Niger 0.652 -4.02% 138
Nigeria Nigeria 13.6 -3.08% 58
Nicaragua Nicaragua 1.07 +6.29% 126
Netherlands Netherlands 32.4 -18.8% 36
Norway Norway 1.64 +0.00609% 116
Nepal Nepal 0 193
New Zealand New Zealand 5.59 -4.92% 80
Oman Oman 17.3 +3.36% 48
Pakistan Pakistan 47.6 -7.3% 32
Panama Panama 6.37 +53.2% 78
Peru Peru 11.8 +2.43% 63
Philippines Philippines 82.7 +9.78% 21
Palau Palau 0.483 +2.72% 142
Papua New Guinea Papua New Guinea 1.41 +2.4% 120
Poland Poland 118 -18% 16
Puerto Rico Puerto Rico 10.7 +10.3% 66
North Korea North Korea 13.1 +8.45% 61
Portugal Portugal 6.6 -17.6% 77
Paraguay Paraguay 0.0012 0% 192
French Polynesia French Polynesia 0.289 +2.7% 149
Qatar Qatar 27.1 +9.59% 40
Romania Romania 15.6 -18.2% 53
Russia Russia 882 +2.35% 4
Rwanda Rwanda 0.336 +4.42% 146
Saudi Arabia Saudi Arabia 262 +3.77% 7
Sudan Sudan 4.76 +0.0358% 84
Senegal Senegal 3.6 -3.51% 95
Singapore Singapore 20 -5.52% 47
Solomon Islands Solomon Islands 0.0958 +2.68% 171
Sierra Leone Sierra Leone 0.182 -3.08% 156
El Salvador El Salvador 0.741 +6.36% 135
Somalia Somalia 0.166 +0.0604% 160
São Tomé & Príncipe São Tomé & Príncipe 0.0425 +4.68% 183
Suriname Suriname 1.05 +8.15% 127
Slovakia Slovakia 5.09 -4.04% 81
Slovenia Slovenia 3.21 -7.94% 99
Sweden Sweden 5.9 -0.553% 79
Eswatini Eswatini 0.1 +1.21% 170
Seychelles Seychelles 0.245 +2.72% 153
Syria Syria 11.2 +1.83% 64
Turks & Caicos Islands Turks & Caicos Islands 0.0512 +4.7% 180
Chad Chad 0.373 +4.48% 144
Togo Togo 0.278 -3.07% 151
Thailand Thailand 80.1 +1.06% 22
Tajikistan Tajikistan 1.69 +2.38% 114
Turkmenistan Turkmenistan 15.9 -2.09% 52
Timor-Leste Timor-Leste 0.153 +2.69% 162
Tonga Tonga 0.0504 +2.65% 181
Trinidad & Tobago Trinidad & Tobago 4.71 -6.2% 86
Tunisia Tunisia 9.38 +9.28% 68
Turkey Turkey 131 +1.84% 15
Tanzania Tanzania 3.05 +2.95% 101
Uganda Uganda 0.0421 0% 184
Ukraine Ukraine 50 -2.89% 29
Uruguay Uruguay 1.48 +0.954% 119
United States United States 1,463 -7.4% 2
Uzbekistan Uzbekistan 47.7 +0.0846% 31
St. Vincent & Grenadines St. Vincent & Grenadines 0.0478 +4.82% 182
Venezuela Venezuela 15.6 +15% 54
British Virgin Islands British Virgin Islands 0.0374 +4.76% 186
Vietnam Vietnam 155 +21.4% 14
Vanuatu Vanuatu 0.0658 +2.81% 176
Samoa Samoa 0.107 +2.68% 169
Yemen Yemen 1.83 +0.87% 111
South Africa South Africa 194 -5.66% 9
Zambia Zambia 1.88 +11.1% 110
Zimbabwe Zimbabwe 4.75 +11.6% 85

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CO2.PI.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CO2.PI.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))