Carbon dioxide (CO2) emissions from Fugitive Emissions (Energy) (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0 138
Afghanistan Afghanistan 0.196 +1.82% 102
Angola Angola 4.44 +5.43% 50
Albania Albania 0.125 -10.9% 108
United Arab Emirates United Arab Emirates 5.05 +1.01% 47
Argentina Argentina 22.9 +0.477% 22
Armenia Armenia 0.202 -5.22% 101
Antigua & Barbuda Antigua & Barbuda 0 138
Australia Australia 35.3 -4.6% 13
Austria Austria 5.71 -0.0876% 43
Azerbaijan Azerbaijan 3.52 +10% 56
Burundi Burundi 0 138
Belgium Belgium 5.53 -0.498% 46
Benin Benin 0.046 +0.656% 111
Burkina Faso Burkina Faso 0 138
Bangladesh Bangladesh 1.33 -0.391% 75
Bulgaria Bulgaria 2.63 +1.22% 63
Bahrain Bahrain 3.75 +2.56% 53
Bahamas Bahamas 0.0001 137
Bosnia & Herzegovina Bosnia & Herzegovina 1.5 +1.05% 72
Belarus Belarus 2.89 +0.949% 61
Belize Belize 0.0054 -8.47% 126
Bermuda Bermuda 0 138
Bolivia Bolivia 1.31 +7.11% 77
Brazil Brazil 26.2 +0.183% 19
Barbados Barbados 0.0007 +16.7% 135
Brunei Brunei 3.24 +1.38% 58
Bhutan Bhutan 0.002 0% 130
Botswana Botswana 0.0234 +2.63% 118
Central African Republic Central African Republic 0 138
Canada Canada 143 +0.542% 4
Switzerland Switzerland 0.383 -6.61% 96
Chile Chile 2.42 -6.13% 66
China China 707 +4.22% 1
Côte d’Ivoire Côte d’Ivoire 0.401 +3.94% 93
Cameroon Cameroon 1.31 -10.6% 76
Congo - Kinshasa Congo - Kinshasa 0.221 -44.5% 100
Congo - Brazzaville Congo - Brazzaville 3.3 -8.15% 57
Colombia Colombia 9.75 +5.1% 39
Comoros Comoros 0 138
Cape Verde Cape Verde 0 138
Costa Rica Costa Rica 0.0002 0% 136
Cuba Cuba 0.435 +14.8% 92
Cayman Islands Cayman Islands 0 138
Cyprus Cyprus 0 -100% 138
Czechia Czechia 5.7 +1.62% 44
Germany Germany 24 -12.7% 20
Djibouti Djibouti 0 138
Dominica Dominica 0 138
Denmark Denmark 1.76 -0.819% 71
Dominican Republic Dominican Republic 0.386 +11% 95
Algeria Algeria 28.5 -5.68% 18
Ecuador Ecuador 5.71 +15.4% 42
Egypt Egypt 19.1 -3.9% 26
Eritrea Eritrea 0 138
Spain Spain 16.7 -6.66% 28
Estonia Estonia 3.78 -1.09% 52
Ethiopia Ethiopia 0.0001 0% 137
Finland Finland 2.92 -7.86% 60
Fiji Fiji 0 138
France France 15 -15.5% 32
Gabon Gabon 2.61 -14.7% 64
United Kingdom United Kingdom 23.7 -8.17% 21
Georgia Georgia 0.145 -10.8% 106
Ghana Ghana 1.19 +2.24% 78
Guinea Guinea 0 138
Gambia Gambia 0 138
Guinea-Bissau Guinea-Bissau 0 138
Equatorial Guinea Equatorial Guinea 1.01 -10.5% 83
Greece Greece 4.07 +4.07% 51
Grenada Grenada 0 138
Greenland Greenland 0.0103 -7.21% 121
Guatemala Guatemala 0.259 +7.08% 98
Guyana Guyana 0.277 -27.4% 97
Hong Kong SAR China Hong Kong SAR China 0.148 -36.1% 104
Honduras Honduras 0.0185 +3.35% 119
Croatia Croatia 0.905 +2.18% 85
Haiti Haiti 0.013 +9.24% 120
Hungary Hungary 3.56 +2.38% 55
Indonesia Indonesia 29.3 +6.57% 17
India India 129 +6.46% 5
Ireland Ireland 0.44 -8.26% 90
Iran Iran 97.3 +9.35% 6
Iraq Iraq 47.2 -7.05% 10
Israel Israel 1.96 +1.79% 68
Italy Italy 11.4 -4.13% 37
Jamaica Jamaica 0.0071 0% 125
Jordan Jordan 0.504 +10.4% 88
Japan Japan 32.2 -11.5% 16
Kazakhstan Kazakhstan 20.7 -0.516% 25
Kenya Kenya 0 138
Kyrgyzstan Kyrgyzstan 0.072 +9.26% 110
Cambodia Cambodia 0.0002 0% 136
Kiribati Kiribati 0 138
St. Kitts & Nevis St. Kitts & Nevis 0 138
South Korea South Korea 45.5 -5.87% 11
Kuwait Kuwait 21.4 +5.28% 23
Laos Laos 0.0095 +7.95% 122
Lebanon Lebanon 0 138
Liberia Liberia 0 138
Libya Libya 15.6 +24.2% 30
St. Lucia St. Lucia 0 138
Sri Lanka Sri Lanka 0.0268 -12.1% 116
Lesotho Lesotho 0 138
Lithuania Lithuania 1.47 +9.1% 73
Luxembourg Luxembourg 0 138
Latvia Latvia 0.024 -0.826% 117
Macao SAR China Macao SAR China 0.148 +0.956% 105
Morocco Morocco 0.0075 0% 124
Moldova Moldova 0.0371 -18.3% 112
Madagascar Madagascar 0 138
Maldives Maldives 0 138
Mexico Mexico 60.3 +3.1% 8
North Macedonia North Macedonia 0.0037 +5.71% 127
Mali Mali 0 138
Malta Malta 0.0017 0% 131
Myanmar (Burma) Myanmar (Burma) 1.01 -0.297% 82
Mongolia Mongolia 2.32 +25.2% 67
Mozambique Mozambique 1.05 -26.4% 81
Mauritania Mauritania 0 138
Malawi Malawi 0.0009 +12.5% 133
Malaysia Malaysia 33.4 -6.16% 15
Namibia Namibia 0 138
New Caledonia New Caledonia 0 138
Niger Niger 0.155 0% 103
Nigeria Nigeria 21.3 +3.02% 24
Nicaragua Nicaragua 0.0953 +3.14% 109
Netherlands Netherlands 11.3 -5.25% 38
Norway Norway 11.7 -0.75% 36
Nepal Nepal 0.0001 0% 137
New Zealand New Zealand 0.977 +6.18% 84
Oman Oman 15.2 -0.00527% 31
Pakistan Pakistan 5.75 +0.876% 41
Panama Panama 0 138
Peru Peru 3.15 +1.56% 59
Philippines Philippines 0.794 +1.31% 86
Palau Palau 0.0008 -11.1% 134
Papua New Guinea Papua New Guinea 0.435 -6.69% 91
Poland Poland 11.9 -1.71% 34
Puerto Rico Puerto Rico 0.003 +20% 129
North Korea North Korea 0.241 -7.85% 99
Portugal Portugal 1.79 -9.7% 70
Paraguay Paraguay 0 138
French Polynesia French Polynesia 0 138
Qatar Qatar 50.7 +8.48% 9
Romania Romania 2.55 -11.4% 65
Russia Russia 226 +6.69% 3
Rwanda Rwanda 0 138
Saudi Arabia Saudi Arabia 35.4 -1.82% 12
Sudan Sudan 0.61 -18.4% 87
Senegal Senegal 0.128 +0.709% 107
Singapore Singapore 4.47 -3.48% 49
Solomon Islands Solomon Islands 0 138
Sierra Leone Sierra Leone 0 138
El Salvador El Salvador 0 138
Somalia Somalia 0 138
São Tomé & Príncipe São Tomé & Príncipe 0 138
Suriname Suriname 0.0337 -9.65% 113
Slovakia Slovakia 5.66 -1.15% 45
Slovenia Slovenia 0.0093 -8.82% 123
Sweden Sweden 3.69 -2.55% 54
Eswatini Eswatini 0.0013 0% 132
Seychelles Seychelles 0 138
Syria Syria 2.86 +1.61% 62
Turks & Caicos Islands Turks & Caicos Islands 0 138
Chad Chad 0.448 -3.8% 89
Togo Togo 0 138
Thailand Thailand 16.2 +5.71% 29
Tajikistan Tajikistan 0.0282 +2.17% 114
Turkmenistan Turkmenistan 8.6 +1.04% 40
Timor-Leste Timor-Leste 0.0337 -48.2% 113
Tonga Tonga 0 138
Trinidad & Tobago Trinidad & Tobago 4.79 -6.3% 48
Tunisia Tunisia 1.13 -4.62% 79
Turkey Turkey 17.1 -2.06% 27
Tanzania Tanzania 0.0281 +15.6% 115
Ukraine Ukraine 12.6 +6.15% 33
Uruguay Uruguay 0.388 -2.83% 94
United States United States 299 +1.66% 2
Uzbekistan Uzbekistan 11.9 +1.18% 35
St. Vincent & Grenadines St. Vincent & Grenadines 0 138
Venezuela Venezuela 35 -2.04% 14
British Virgin Islands British Virgin Islands 0 138
Vietnam Vietnam 1.87 +9.57% 69
Vanuatu Vanuatu 0 138
Samoa Samoa 0 138
Yemen Yemen 1.34 -30.1% 74
South Africa South Africa 65.2 -2.55% 7
Zambia Zambia 0.0036 +5.88% 128
Zimbabwe Zimbabwe 1.09 +14.7% 80

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CO2.FE.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CO2.FE.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))