Carbon dioxide (CO2) emissions from Building (Energy) (Mt CO2e)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 0.0431 +4.87% 174
Afghanistan Afghanistan 0.623 +2.7% 112
Angola Angola 7.37 +4.5% 49
Albania Albania 0.794 +1.39% 106
United Arab Emirates United Arab Emirates 0.797 +2.76% 105
Argentina Argentina 39.9 -3.2% 17
Armenia Armenia 2.4 +8.21% 74
Antigua & Barbuda Antigua & Barbuda 0.0263 +4.78% 182
Australia Australia 30.1 +1.1% 21
Austria Austria 7.43 -6.46% 48
Azerbaijan Azerbaijan 11.3 +10.2% 38
Burundi Burundi 0.0594 0% 168
Belgium Belgium 19.7 -5.52% 28
Benin Benin 0.188 -3.1% 143
Burkina Faso Burkina Faso 0.4 -3.1% 125
Bangladesh Bangladesh 11.1 -7.51% 39
Bulgaria Bulgaria 1.45 -17.9% 85
Bahrain Bahrain 0.242 0% 138
Bahamas Bahamas 0.137 +4.9% 151
Bosnia & Herzegovina Bosnia & Herzegovina 0.951 -0.947% 98
Belarus Belarus 6.93 -4.77% 50
Belize Belize 0.0223 +6.7% 184
Bermuda Bermuda 0.0285 +4.78% 180
Bolivia Bolivia 2.92 +2.9% 68
Brazil Brazil 41.3 +1.73% 15
Barbados Barbados 0.0576 +4.92% 169
Brunei Brunei 0.0911 +1.9% 158
Bhutan Bhutan 0.113 +2.73% 155
Botswana Botswana 0.145 +2.83% 150
Central African Republic Central African Republic 0.0301 +4.51% 176
Canada Canada 90.4 -1.62% 8
Switzerland Switzerland 9.76 -2% 42
Chile Chile 7.99 +0.291% 46
China China 655 +7.5% 1
Côte d’Ivoire Côte d’Ivoire 1.46 -3.1% 84
Cameroon Cameroon 0.844 +4.49% 101
Congo - Kinshasa Congo - Kinshasa 0.0002 0% 193
Congo - Brazzaville Congo - Brazzaville 0.0888 +4.47% 160
Colombia Colombia 10.8 +3.46% 41
Comoros Comoros 0.0264 0% 181
Cape Verde Cape Verde 0.0842 -3.11% 162
Costa Rica Costa Rica 0.607 +6.28% 114
Cuba Cuba 3.37 +5.39% 65
Cayman Islands Cayman Islands 0.0291 +4.68% 178
Cyprus Cyprus 0.517 -0.193% 120
Czechia Czechia 9.63 -9.7% 44
Germany Germany 124 -3.86% 6
Djibouti Djibouti 0.0508 +0.197% 171
Dominica Dominica 0.0064 +4.92% 191
Denmark Denmark 3.67 -1.3% 61
Dominican Republic Dominican Republic 1.92 +4.87% 79
Algeria Algeria 30.8 -5.73% 19
Ecuador Ecuador 6.59 +6.77% 51
Egypt Egypt 17.6 -1.96% 30
Eritrea Eritrea 0.0469 0% 173
Spain Spain 28.6 -5.75% 22
Estonia Estonia 0.556 -6.43% 118
Ethiopia Ethiopia 1.44 +0.0347% 87
Finland Finland 3.17 -7.92% 67
Fiji Fiji 0.293 +2.7% 132
France France 59.2 -7.1% 11
Gabon Gabon 0.175 +4.48% 145
United Kingdom United Kingdom 74.4 -8.04% 9
Georgia Georgia 3.37 +4.25% 66
Ghana Ghana 1.06 -3.1% 96
Guinea Guinea 0.257 -3.09% 137
Gambia Gambia 0.0504 -3.08% 172
Guinea-Bissau Guinea-Bissau 0.0287 -3.04% 179
Equatorial Guinea Equatorial Guinea 0.129 +4.45% 152
Greece Greece 6.38 -2.83% 52
Grenada Grenada 0.0116 +4.5% 187
Greenland Greenland 0.337 +1.48% 131
Guatemala Guatemala 1.34 +6.28% 89
Guyana Guyana 0.287 +0.914% 133
Hong Kong SAR China Hong Kong SAR China 1.59 +8.86% 83
Honduras Honduras 0.859 +6.29% 100
Croatia Croatia 2.76 +1.36% 70
Haiti Haiti 0.271 +4.84% 135
Hungary Hungary 9.7 -10.3% 43
Indonesia Indonesia 30.6 +0.265% 20
India India 222 +6.19% 4
Ireland Ireland 7.5 -7.66% 47
Iran Iran 181 +1.99% 5
Iraq Iraq 11.6 +6.1% 35
Iceland Iceland 0.518 -6.06% 119
Israel Israel 1.64 -0.914% 82
Italy Italy 52.3 -8.15% 12
Jamaica Jamaica 0.379 +4.87% 127
Jordan Jordan 2.58 -0.0155% 72
Japan Japan 109 -5.3% 7
Kazakhstan Kazakhstan 40.7 +1.05% 16
Kenya Kenya 2.05 +0.0341% 77
Kyrgyzstan Kyrgyzstan 4.27 +1.6% 59
Cambodia Cambodia 1.31 +2.7% 90
Kiribati Kiribati 0.0131 +2.34% 186
St. Kitts & Nevis St. Kitts & Nevis 0.0097 +5.43% 188
South Korea South Korea 51.5 -3.16% 13
Kuwait Kuwait 0.791 -1.03% 107
Laos Laos 0.0847 +2.79% 161
Lebanon Lebanon 0.615 -0.0163% 113
Liberia Liberia 0.119 -3.1% 154
Libya Libya 1.14 -0.565% 93
St. Lucia St. Lucia 0.0241 +4.78% 183
Sri Lanka Sri Lanka 1.31 +9.86% 91
Lesotho Lesotho 0.0734 +3.09% 164
Lithuania Lithuania 1.07 -10.1% 95
Luxembourg Luxembourg 1.4 -4.61% 88
Latvia Latvia 1.14 -2.29% 94
Macao SAR China Macao SAR China 0.37 +2.67% 128
Morocco Morocco 10.9 -0.834% 40
Moldova Moldova 1.92 +5.02% 80
Madagascar Madagascar 0.341 +0.0293% 130
Maldives Maldives 0.388 +2.7% 126
Mexico Mexico 28 +2.06% 23
North Macedonia North Macedonia 0.242 +2.37% 139
Mali Mali 0.487 -3.08% 122
Malta Malta 0.153 -1.99% 148
Myanmar (Burma) Myanmar (Burma) 6.37 +2.71% 53
Mongolia Mongolia 3.5 +8.32% 62
Mozambique Mozambique 0.193 +1.1% 142
Mauritania Mauritania 0.356 -3.1% 129
Mauritius Mauritius 0.231 +0.0433% 140
Malawi Malawi 0.179 +4.08% 144
Malaysia Malaysia 9.43 +11.6% 45
Namibia Namibia 1.45 +3.09% 86
New Caledonia New Caledonia 0.491 +2.7% 121
Niger Niger 0.26 -3.14% 136
Nigeria Nigeria 4.83 -3.1% 56
Nicaragua Nicaragua 0.819 +6.28% 103
Netherlands Netherlands 23.5 -5.43% 26
Norway Norway 2.37 -0.349% 75
Nepal Nepal 2.71 +3.36% 71
New Zealand New Zealand 3.5 +5.32% 63
Oman Oman 20.4 +3.28% 27
Pakistan Pakistan 19.1 -5.7% 29
Panama Panama 0.819 +6.28% 104
Peru Peru 5.22 +2.79% 55
Philippines Philippines 14 +4.6% 33
Palau Palau 0.104 +2.68% 157
Papua New Guinea Papua New Guinea 0.695 +2.67% 111
Poland Poland 43.4 -6.04% 14
Puerto Rico Puerto Rico 0.706 +5.36% 110
North Korea North Korea 11.3 +8.68% 37
Portugal Portugal 3.42 -9.11% 64
Paraguay Paraguay 0.208 +0.923% 141
French Polynesia French Polynesia 0.17 +2.72% 146
Qatar Qatar 0.485 +5.01% 123
Romania Romania 11.5 -4.96% 36
Russia Russia 269 +1.02% 3
Rwanda Rwanda 0.149 0% 149
Saudi Arabia Saudi Arabia 5.71 +4.46% 54
Sudan Sudan 1.23 +0.0326% 92
Senegal Senegal 0.587 -3.1% 116
Singapore Singapore 0.732 +1.26% 109
Solomon Islands Solomon Islands 0.0565 +2.73% 170
Sierra Leone Sierra Leone 0.0771 -3.14% 163
El Salvador El Salvador 0.743 +6.28% 108
Somalia Somalia 0.0701 +0.143% 166
São Tomé & Príncipe São Tomé & Príncipe 0.018 +4.65% 185
Suriname Suriname 0.582 +0.919% 117
Slovakia Slovakia 4.35 -4.54% 58
Slovenia Slovenia 0.979 -9.28% 97
Sweden Sweden 1.97 -3.49% 78
Eswatini Eswatini 0.128 +3.05% 153
Seychelles Seychelles 0.104 +2.67% 156
Syria Syria 2.88 -0.0139% 69
Turks & Caicos Islands Turks & Caicos Islands 0.0084 +5% 189
Chad Chad 0.158 +4.51% 147
Togo Togo 0.0708 -3.15% 165
Thailand Thailand 13.1 -0.248% 34
Tajikistan Tajikistan 2.32 +0.976% 76
Turkmenistan Turkmenistan 26 -1.16% 24
Timor-Leste Timor-Leste 0.0901 +2.62% 159
Tonga Tonga 0.0297 +2.77% 177
Trinidad & Tobago Trinidad & Tobago 0.439 -1.08% 124
Tunisia Tunisia 4.37 +2.21% 57
Turkey Turkey 68.3 -3.84% 10
Tanzania Tanzania 0.823 +0.0365% 102
Uganda Uganda 0.607 +0.0329% 115
Ukraine Ukraine 16.5 +1.37% 32
Uruguay Uruguay 0.931 +1.93% 99
United States United States 595 +0.637% 2
Uzbekistan Uzbekistan 36.8 -1.76% 18
St. Vincent & Grenadines St. Vincent & Grenadines 0.0078 +4% 190
Venezuela Venezuela 3.75 +17.9% 60
British Virgin Islands British Virgin Islands 0.0061 +5.17% 192
Vietnam Vietnam 17.4 +12.7% 31
Vanuatu Vanuatu 0.0388 +2.92% 175
Samoa Samoa 0.0633 +2.76% 167
Yemen Yemen 2.45 -0.0122% 73
South Africa South Africa 23.7 -0.357% 25
Zambia Zambia 0.276 +0.0362% 134
Zimbabwe Zimbabwe 1.79 +0.976% 81

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'EN.GHG.CO2.BU.MT.CE.AR5'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'EN.GHG.CO2.BU.MT.CE.AR5'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))