Binding coverage, primary products (%)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Angola Angola 99.9 0% 2
Albania Albania 0 -100% 19
Argentina Argentina 99.9 0% 2
Australia Australia 0 -100% 19
Austria Austria 0 -100% 19
Burundi Burundi 0 -100% 19
Belgium Belgium 0 -100% 19
Benin Benin 0 -100% 19
Burkina Faso Burkina Faso 0 -100% 19
Bangladesh Bangladesh 53.6 0% 18
Bulgaria Bulgaria 0 -100% 19
Bahrain Bahrain 0 -100% 19
Belize Belize 0 -100% 19
Bolivia Bolivia 99.9 0% 2
Brazil Brazil 99.9 0% 2
Barbados Barbados 83.8 0% 10
Brunei Brunei 98.1 0% 6
Botswana Botswana 0 -100% 19
Central African Republic Central African Republic 0 -100% 19
Canada Canada 0 -100% 19
Switzerland Switzerland 0 -100% 19
Chile Chile 99.9 0% 2
China China 0 -100% 19
Côte d’Ivoire Côte d’Ivoire 55.1 0% 17
Cameroon Cameroon 0 -100% 19
Congo - Brazzaville Congo - Brazzaville 0 -100% 19
Colombia Colombia 99.9 0% 2
Cape Verde Cape Verde 99.9 0% 3
Costa Rica Costa Rica 0 -100% 19
Cuba Cuba 58.4 +0.0686% 15
Cyprus Cyprus 0 -100% 19
Czechia Czechia 0 -100% 19
Germany Germany 0 -100% 19
Denmark Denmark 0 -100% 19
Dominican Republic Dominican Republic 0 -100% 19
Ecuador Ecuador 93.5 0% 7
Spain Spain 0 -100% 19
Estonia Estonia 0 -100% 19
Finland Finland 0 -100% 19
France France 0 -100% 19
Gabon Gabon 0 -100% 19
United Kingdom United Kingdom 0 19
Georgia Georgia 99.9 0% 2
Ghana Ghana 0 -100% 19
Guinea Guinea 0 -100% 19
Gambia Gambia 0 -100% 19
Guinea-Bissau Guinea-Bissau 0 -100% 19
Greece Greece 0 -100% 19
Grenada Grenada 100 0% 1
Guatemala Guatemala 0 -100% 19
Guyana Guyana 99.9 0% 2
Hong Kong SAR China Hong Kong SAR China 0 -100% 19
Honduras Honduras 0 -100% 19
Croatia Croatia 0 -100% 19
Hungary Hungary 0 -100% 19
Indonesia Indonesia 0 -100% 19
India India 0 -100% 19
Ireland Ireland 0 -100% 19
Iceland Iceland 0 -100% 19
Israel Israel 88.8 0% 8
Italy Italy 0 -100% 19
Jamaica Jamaica 0 -100% 19
Jordan Jordan 99.9 0% 3
Japan Japan 0 -100% 19
Kazakhstan Kazakhstan 0 -100% 19
Kenya Kenya 0 -100% 19
Cambodia Cambodia 0 -100% 19
South Korea South Korea 0 -100% 19
Kuwait Kuwait 99.6 +0.101% 4
Laos Laos 99.9 0% 2
Liberia Liberia 0 -100% 19
Lesotho Lesotho 0 -100% 19
Lithuania Lithuania 0 -100% 19
Latvia Latvia 0 -100% 19
Macao SAR China Macao SAR China 0 -100% 19
Moldova Moldova 99.9 0% 2
Madagascar Madagascar 0 -100% 19
Maldives Maldives 0 -100% 19
Mexico Mexico 99.9 -0.08% 2
North Macedonia North Macedonia 0 -100% 19
Mali Mali 0 -100% 19
Malta Malta 0 -100% 19
Myanmar (Burma) Myanmar (Burma) 58.5 0% 14
Montenegro Montenegro 0 -100% 19
Mongolia Mongolia 0 -100% 19
Mauritania Mauritania 58.6 0% 13
Mauritius Mauritius 0 -100% 19
Malaysia Malaysia 0 -100% 19
Namibia Namibia 0 -100% 19
Niger Niger 0 -100% 19
Nigeria Nigeria 0 -100% 19
Nicaragua Nicaragua 0 -100% 19
Netherlands Netherlands 0 -100% 19
Norway Norway 0 -100% 19
Nepal Nepal 0 -100% 19
New Zealand New Zealand 0 -100% 19
Oman Oman 0 -100% 19
Pakistan Pakistan 0 -100% 19
Panama Panama 0 -100% 19
Peru Peru 99.9 0% 2
Philippines Philippines 65.7 0% 12
Poland Poland 0 -100% 19
Portugal Portugal 0 -100% 19
Paraguay Paraguay 99.9 0% 2
Qatar Qatar 0 -100% 19
Romania Romania 0 -100% 19
Rwanda Rwanda 0 -100% 19
Saudi Arabia Saudi Arabia 0 -100% 19
Senegal Senegal 0 -100% 19
Singapore Singapore 85.6 0% 9
Solomon Islands Solomon Islands 0 -100% 19
Sierra Leone Sierra Leone 0 -100% 19
El Salvador El Salvador 0 -100% 19
Suriname Suriname 55.7 0% 16
Slovakia Slovakia 0 -100% 19
Slovenia Slovenia 0 -100% 19
Sweden Sweden 0 -100% 19
Eswatini Eswatini 0 -100% 19
Seychelles Seychelles 99.9 0% 2
Chad Chad 0 -100% 19
Togo Togo 0 -100% 19
Thailand Thailand 0 -100% 19
Tonga Tonga 99.9 0% 2
Trinidad & Tobago Trinidad & Tobago 100 0% 1
Turkey Turkey 0 -100% 19
Tanzania Tanzania 0 -100% 19
Uganda Uganda 0 -100% 19
Ukraine Ukraine 99.9 0% 2
Uruguay Uruguay 99.9 0% 2
United States United States 0 -100% 19
St. Vincent & Grenadines St. Vincent & Grenadines 98.8 0% 5
Venezuela Venezuela 99.9 0% 3
Vietnam Vietnam 80.2 0% 11
Vanuatu Vanuatu 0 -100% 19
South Africa South Africa 0 -100% 19
Zambia Zambia 0 -100% 19

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TM.TAX.TCOM.BC.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TM.TAX.TCOM.BC.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))