Binding coverage, manufactured products (%)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Angola Angola 100 0% 1
Albania Albania 0 -100% 15
Argentina Argentina 100 0% 1
Australia Australia 0 -100% 15
Austria Austria 0 -100% 15
Burundi Burundi 0 -100% 15
Belgium Belgium 0 -100% 15
Benin Benin 0 -100% 15
Burkina Faso Burkina Faso 0 -100% 15
Bangladesh Bangladesh 4.52 0% 14
Bulgaria Bulgaria 0 -100% 15
Bahrain Bahrain 0 -100% 15
Belize Belize 0 -100% 15
Bolivia Bolivia 100 0% 1
Brazil Brazil 100 0% 1
Barbados Barbados 100 0% 1
Brunei Brunei 94.8 0% 5
Botswana Botswana 0 -100% 15
Central African Republic Central African Republic 0 -100% 15
Canada Canada 0 -100% 15
Switzerland Switzerland 0 -100% 15
Chile Chile 100 0% 1
China China 0 -100% 15
Côte d’Ivoire Côte d’Ivoire 26.8 0% 10
Cameroon Cameroon 0 -100% 15
Congo - Brazzaville Congo - Brazzaville 0 -100% 15
Colombia Colombia 100 0% 1
Cape Verde Cape Verde 100 0% 1
Costa Rica Costa Rica 0 -100% 15
Cuba Cuba 23.6 0% 11
Cyprus Cyprus 0 -100% 15
Czechia Czechia 0 -100% 15
Germany Germany 0 -100% 15
Denmark Denmark 0 -100% 15
Dominican Republic Dominican Republic 0 -100% 15
Ecuador Ecuador 94.9 0% 4
Spain Spain 0 -100% 15
Estonia Estonia 0 -100% 15
Finland Finland 0 -100% 15
France France 0 -100% 15
Gabon Gabon 0 -100% 15
United Kingdom United Kingdom 0 15
Georgia Georgia 100 0% 1
Ghana Ghana 0 -100% 15
Guinea Guinea 0 -100% 15
Gambia Gambia 0 -100% 15
Guinea-Bissau Guinea-Bissau 0 -100% 15
Greece Greece 0 -100% 15
Grenada Grenada 100 -0.03% 2
Guatemala Guatemala 0 -100% 15
Guyana Guyana 100 0% 1
Hong Kong SAR China Hong Kong SAR China 0 -100% 15
Honduras Honduras 0 -100% 15
Croatia Croatia 0 -100% 15
Hungary Hungary 0 -100% 15
Indonesia Indonesia 0 -100% 15
India India 0 -100% 15
Ireland Ireland 0 -100% 15
Iceland Iceland 0 -100% 15
Israel Israel 71.5 0% 6
Italy Italy 0 -100% 15
Jamaica Jamaica 0 -100% 15
Jordan Jordan 100 0% 1
Japan Japan 0 -100% 15
Kazakhstan Kazakhstan 0 -100% 15
Kenya Kenya 0 -100% 15
Cambodia Cambodia 0 -100% 15
South Korea South Korea 0 -100% 15
Kuwait Kuwait 100 -0.03% 2
Laos Laos 100 0% 1
Liberia Liberia 0 -100% 15
Lesotho Lesotho 0 -100% 15
Lithuania Lithuania 0 -100% 15
Latvia Latvia 0 -100% 15
Macao SAR China Macao SAR China 0 -100% 15
Moldova Moldova 100 0% 1
Madagascar Madagascar 0 -100% 15
Maldives Maldives 0 -100% 15
Mexico Mexico 100 0% 1
North Macedonia North Macedonia 0 -100% 15
Mali Mali 0 -100% 15
Malta Malta 0 -100% 15
Myanmar (Burma) Myanmar (Burma) 5.02 0% 13
Montenegro Montenegro 0 -100% 15
Mongolia Mongolia 0 -100% 15
Mauritania Mauritania 34.3 0% 9
Mauritius Mauritius 0 -100% 15
Malaysia Malaysia 0 -100% 15
Namibia Namibia 0 -100% 15
Niger Niger 0 -100% 15
Nigeria Nigeria 0 -100% 15
Nicaragua Nicaragua 0 -100% 15
Netherlands Netherlands 0 -100% 15
Norway Norway 0 -100% 15
Nepal Nepal 0 -100% 15
New Zealand New Zealand 0 -100% 15
Oman Oman 0 -100% 15
Pakistan Pakistan 0 -100% 15
Panama Panama 0 -100% 15
Peru Peru 100 0% 1
Philippines Philippines 61.4 0% 8
Poland Poland 0 -100% 15
Portugal Portugal 0 -100% 15
Paraguay Paraguay 100 0% 1
Qatar Qatar 0 -100% 15
Romania Romania 0 -100% 15
Rwanda Rwanda 0 -100% 15
Saudi Arabia Saudi Arabia 0 -100% 15
Senegal Senegal 0 -100% 15
Singapore Singapore 67.4 0% 7
Solomon Islands Solomon Islands 0 -100% 15
Sierra Leone Sierra Leone 0 -100% 15
El Salvador El Salvador 0 -100% 15
Suriname Suriname 18.9 0% 12
Slovakia Slovakia 0 -100% 15
Slovenia Slovenia 0 -100% 15
Sweden Sweden 0 -100% 15
Eswatini Eswatini 0 -100% 15
Seychelles Seychelles 100 0% 1
Chad Chad 0 -100% 15
Togo Togo 0 -100% 15
Thailand Thailand 0 -100% 15
Tonga Tonga 100 0% 1
Trinidad & Tobago Trinidad & Tobago 100 0% 1
Turkey Turkey 0 -100% 15
Tanzania Tanzania 0 -100% 15
Uganda Uganda 0 -100% 15
Ukraine Ukraine 100 0% 1
Uruguay Uruguay 100 0% 1
United States United States 0 -100% 15
St. Vincent & Grenadines St. Vincent & Grenadines 100 0% 2
Venezuela Venezuela 100 0% 1
Vietnam Vietnam 98.7 0% 3
Vanuatu Vanuatu 0 -100% 15
South Africa South Africa 0 -100% 15
Zambia Zambia 0 -100% 15

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TM.TAX.MANF.BC.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TM.TAX.MANF.BC.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))