Bank liquid reserves to bank assets ratio (%)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 52.4 -14.1% 8
Albania Albania 14.3 -29.3% 66
United Arab Emirates United Arab Emirates 19.3 +6.08% 50
Argentina Argentina 24 -79.1% 35
Armenia Armenia 15.6 +0.112% 61
Antigua & Barbuda Antigua & Barbuda 12.4 -18.7% 70
Australia Australia 8.34 -30.1% 85
Azerbaijan Azerbaijan 22.4 -23.5% 39
Benin Benin 4.4 -1.85% 108
Burkina Faso Burkina Faso 6.95 +11.1% 94
Bangladesh Bangladesh 7.46 -0.734% 91
Bulgaria Bulgaria 21.7 -20.4% 44
Bosnia & Herzegovina Bosnia & Herzegovina 26.3 -6.49% 32
Belize Belize 21.9 -11.4% 41
Bolivia Bolivia 28.9 +11.4% 25
Brazil Brazil 21.7 -6.82% 43
Brunei Brunei 7.21 -26.6% 93
Bhutan Bhutan 23.2 +38.2% 37
Botswana Botswana 4.85 -62% 107
Chile Chile 8.25 -54.8% 86
Côte d’Ivoire Côte d’Ivoire 15.2 +31.9% 62
Colombia Colombia 4.89 -10.1% 106
Costa Rica Costa Rica 26.1 +8% 33
Czechia Czechia 51.3 +1.65% 9
Djibouti Djibouti 7.61 -18% 89
Dominica Dominica 14.4 -30.6% 64
Denmark Denmark 3.71 -8.69% 111
Dominican Republic Dominican Republic 33.5 -24.4% 20
Algeria Algeria 22.1 -14.1% 40
Ecuador Ecuador 6.1 +20.4% 97
Egypt Egypt 30.1 -22% 24
Fiji Fiji 33.7 -0.437% 19
Georgia Georgia 10.7 -6.26% 76
Guinea-Bissau Guinea-Bissau 9.86 +57.6% 79
Grenada Grenada 15.7 -16.9% 59
Guatemala Guatemala 22.7 +3.01% 38
Guyana Guyana 31.7 +25.1% 21
Hong Kong SAR China Hong Kong SAR China 6.01 -4.99% 99
Honduras Honduras 19.4 -6.57% 49
Haiti Haiti 117 +22% 3
Hungary Hungary 31.2 -6.33% 22
Indonesia Indonesia 20.3 -10.6% 47
Iraq Iraq 53.9 -40.1% 7
Iceland Iceland 6.88 +13.5% 95
Israel Israel 26.4 -3.16% 31
Jamaica Jamaica 19.7 +7.54% 48
Jordan Jordan 23.8 +8.82% 36
Japan Japan 34.8 -5.26% 18
Kazakhstan Kazakhstan 21.3 +8.23% 46
Kyrgyzstan Kyrgyzstan 28.1 -0.502% 26
Cambodia Cambodia 21.5 +6.17% 45
St. Kitts & Nevis St. Kitts & Nevis 10.2 +11.2% 78
South Korea South Korea 3.57 -8.95% 112
Kuwait Kuwait 8.56 -18.2% 84
Libya Libya 214 -2.08% 1
St. Lucia St. Lucia 9.82 -12.2% 80
Lesotho Lesotho 7.86 +79.7% 88
Macao SAR China Macao SAR China 5.4 +4.86% 104
Morocco Morocco 4.06 +46.9% 109
Moldova Moldova 40.3 -27.3% 16
Madagascar Madagascar 21.7 +30.5% 42
Maldives Maldives 28 -21.1% 27
Mexico Mexico 7.47 +4.46% 90
North Macedonia North Macedonia 26.9 -5.72% 28
Mali Mali 7.21 +3.05% 92
Montenegro Montenegro 18 -12.9% 55
Mozambique Mozambique 107 +13.2% 4
Mauritius Mauritius 12.5 +8.21% 69
Malaysia Malaysia 5.76 -23.9% 101
Namibia Namibia 10.6 +34.8% 77
Niger Niger 5.52 +27.8% 103
Nicaragua Nicaragua 36.8 -6% 17
Norway Norway 1.05 +51.4% 114
Nepal Nepal 8.16 +18.9% 87
New Zealand New Zealand 6.24 -24.1% 96
Pakistan Pakistan 19 -13.8% 51
Panama Panama 2.51 -7.37% 113
Philippines Philippines 18 -19.9% 54
Poland Poland 24.9 +10.6% 34
Paraguay Paraguay 18.2 -24.9% 53
Palestinian Territories Palestinian Territories 11.2 -1.55% 74
Qatar Qatar 5 -10.5% 105
Romania Romania 18.3 -28.1% 52
Rwanda Rwanda 15.7 +0.211% 60
Senegal Senegal 12 +10.9% 73
Solomon Islands Solomon Islands 117 +10.4% 2
Sierra Leone Sierra Leone 16.4 -6.51% 57
El Salvador El Salvador 12.2 -1.92% 72
Somalia Somalia 4.04 -2.42% 110
Serbia Serbia 41.2 +4.5% 14
South Sudan South Sudan 65.4 +14.1% 6
Suriname Suriname 49 -1.74% 10
Sweden Sweden 5.98 -19.1% 100
Eswatini Eswatini 15.2 -2.06% 63
Seychelles Seychelles 13.5 -13.9% 68
Togo Togo 6.08 +15.2% 98
Thailand Thailand 16.3 -2.81% 58
Timor-Leste Timor-Leste 11.2 -8.09% 75
Tonga Tonga 81.5 -7.26% 5
Trinidad & Tobago Trinidad & Tobago 12.4 -16.9% 71
Tunisia Tunisia 9.69 +17.6% 81
Turkey Turkey 26.8 -0.949% 29
Tanzania Tanzania 14.3 +8.4% 65
Uganda Uganda 17.9 -7.24% 56
Ukraine Ukraine 46.6 -18.7% 12
Uruguay Uruguay 30.9 +1.54% 23
United States United States 14.1 -14.4% 67
Uzbekistan Uzbekistan 9.26 +6.26% 82
St. Vincent & Grenadines St. Vincent & Grenadines 26.8 -1.76% 30
Vanuatu Vanuatu 40.3 -16.5% 15
Samoa Samoa 46.8 +3.08% 11
Kosovo Kosovo 8.84 -2.82% 83
South Africa South Africa 5.76 +34.3% 102
Zambia Zambia 43.1 +12.1% 13

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'FD.RES.LIQU.AS.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'FD.RES.LIQU.AS.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))