Average transaction cost of sending remittances to a specific country (%)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 9.02 -11.4% 7
Angola Angola 12.8 +56.2% 2
Albania Albania 5.6 -7.97% 18
Armenia Armenia 4.36 +5.39% 29
Bangladesh Bangladesh 7.65 +122% 13
Bulgaria Bulgaria 3.46 -32.2% 39
Bosnia & Herzegovina Bosnia & Herzegovina 3.86 +73.6% 34
Bolivia Bolivia 3.45 -21.4% 41
Brazil Brazil 2.42 +5.31% 61
Botswana Botswana 8.41 +22% 9
China China 2.83 -8.96% 51
Côte d’Ivoire Côte d’Ivoire 0.743 +97.3% 88
Cameroon Cameroon 3.02 +26% 48
Congo - Kinshasa Congo - Kinshasa 1.98 -75.1% 75
Colombia Colombia 2.43 -2.09% 60
Comoros Comoros 1.74 -40.8% 80
Cape Verde Cape Verde 3.44 -49% 42
Costa Rica Costa Rica 2.26 -18.6% 65
Cuba Cuba 19.6 +15.2% 1
Dominican Republic Dominican Republic 2.52 +31.8% 57
Algeria Algeria 7.83 -11.5% 12
Ecuador Ecuador 2.3 +649% 64
Egypt Egypt 3.3 -16% 46
Eritrea Eritrea 9.16 -2.45% 6
Ethiopia Ethiopia 3.41 -14.1% 44
Fiji Fiji 3.22 +1.03% 47
Ghana Ghana 2.01 +41% 73
Gambia Gambia 6.76 +22.2% 14
Guatemala Guatemala 2.56 -8.25% 55
Guyana Guyana 7.93 +4.03% 11
Honduras Honduras 2.62 -6.42% 54
Croatia Croatia 0.266 -74.7% 91
Haiti Haiti 4.7 -10.8% 24
Hungary Hungary 1.61 -12% 83
Indonesia Indonesia 2.44 -16.1% 59
India India 1.76 -0.814% 79
Jamaica Jamaica 3.59 -7.02% 37
Jordan Jordan 3.35 -14.4% 45
Kenya Kenya 3.86 +78.3% 35
Kyrgyzstan Kyrgyzstan 4.22 -35.7% 30
Cambodia Cambodia 2.12 -50.8% 68
Laos Laos 4.87 +1.85% 23
Lebanon Lebanon 5.28 -24.2% 21
Liberia Liberia 2.83 -1.45% 50
Sri Lanka Sri Lanka 2.19 +0.583% 66
Lesotho Lesotho 1.82 +24.7% 78
Lithuania Lithuania 1.4 -4.98% 84
Morocco Morocco 4.17 -15.9% 31
Moldova Moldova 2.01 -44.1% 72
Madagascar Madagascar 2.93 -65.3% 49
Mexico Mexico 2.65 +98% 53
North Macedonia North Macedonia 2.11 -6.17% 69
Mali Mali 1.73 -2.84% 81
Myanmar (Burma) Myanmar (Burma) 4.04 -143% 33
Mozambique Mozambique 3.79 -41.4% 36
Malawi Malawi -49.7 +374% 92
Malaysia Malaysia 0.984 +21.2% 85
Nigeria Nigeria 4.64 +33.6% 26
Nicaragua Nicaragua 2.33 +38.1% 63
Nepal Nepal 2.53 +12.7% 56
Pakistan Pakistan 2.14 +0.951% 67
Panama Panama 2.49 +32.8% 58
Peru Peru 3.57 -5.33% 38
Philippines Philippines 1.67 +16.6% 82
Poland Poland 0.873 -12.5% 86
Paraguay Paraguay 4.66 -30.2% 25
Palestinian Territories Palestinian Territories 1.97 0% 76
Romania Romania 0.873 -39.4% 87
Rwanda Rwanda 5.76 +100% 17
Senegal Senegal 0.72 -45.8% 89
Sierra Leone Sierra Leone 10.3 +4.37% 3
El Salvador El Salvador 2 74
Somalia Somalia 6.01 -14.3% 16
Serbia Serbia 1.94 +1.1% 77
South Sudan South Sudan 6.47 +152% 15
Eswatini Eswatini 1.82 0% 78
Togo Togo 2.06 +304% 70
Thailand Thailand 2.02 -0.272% 71
Tajikistan Tajikistan 10.3 -20% 4
Tonga Tonga 4.1 -13.1% 32
Tunisia Tunisia 5.54 -37.9% 19
Turkey Turkey 2.34 -4.05% 62
Tanzania Tanzania 5.3 +322% 20
Uganda Uganda 8.86 +61.6% 8
Ukraine Ukraine 0.718 -59.6% 90
Vietnam Vietnam 3.46 +5.35% 40
Vanuatu Vanuatu 9.49 +17.9% 5
Samoa Samoa 4.59 +44.6% 27
Kosovo Kosovo 3.42 -10.2% 43
Yemen Yemen 2.81 -18.8% 52
South Africa South Africa 4.55 +121% 28
Zambia Zambia 8.13 +48.8% 10
Zimbabwe Zimbabwe 5.26 +51% 22

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SI.RMT.COST.IB.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SI.RMT.COST.IB.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))