Arable land (% of land area)

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Aruba Aruba 11.1 0% 92
Afghanistan Afghanistan 12 0% 86
Angola Angola 4.31 0% 141
Albania Albania 21.8 -0.3% 49
Andorra Andorra 1.59 0% 177
United Arab Emirates United Arab Emirates 0.708 0% 191
Argentina Argentina 15.7 +2.06% 68
Armenia Armenia 15.6 -0.156% 69
American Samoa American Samoa 4.85 0% 136
Antigua & Barbuda Antigua & Barbuda 9.09 0% 107
Australia Australia 4.06 0% 145
Austria Austria 16 -0.176% 67
Azerbaijan Azerbaijan 25.3 +0.139% 39
Burundi Burundi 50.4 +1.85% 7
Belgium Belgium 28.3 -0.241% 33
Benin Benin 31.4 +1.69% 29
Burkina Faso Burkina Faso 28.9 +1.62% 32
Bangladesh Bangladesh 60.5 0% 1
Bulgaria Bulgaria 31.9 -0.914% 28
Bahrain Bahrain 2.66 0% 158
Bahamas Bahamas 0.799 0% 185
Bosnia & Herzegovina Bosnia & Herzegovina 19.7 0% 55
Belarus Belarus 27.6 -0.34% 37
Belize Belize 4.38 0% 138
Bermuda Bermuda 5.56 0% 128
Bolivia Bolivia 5.13 +2.95% 132
Brazil Brazil 6.66 -0.0431% 121
Barbados Barbados 16.3 0% 66
Brunei Brunei 0.759 0% 187
Bhutan Bhutan 1.81 -5.16% 171
Botswana Botswana 0.459 0% 194
Central African Republic Central African Republic 2.89 0% 155
Canada Canada 4.36 +0.227% 140
Switzerland Switzerland 10 +0.287% 100
Chile Chile 1.74 -13.5% 173
China China 11.5 -0.396% 88
Côte d’Ivoire Côte d’Ivoire 13.5 +1.46% 78
Cameroon Cameroon 13.1 0% 80
Congo - Kinshasa Congo - Kinshasa 6.59 +6.06% 122
Congo - Brazzaville Congo - Brazzaville 1.61 0% 175
Colombia Colombia 2.18 +3.92% 165
Comoros Comoros 34.9 0% 20
Cape Verde Cape Verde 12.4 0% 84
Costa Rica Costa Rica 3.82 -1.95% 148
Cuba Cuba 28 0% 34
Cayman Islands Cayman Islands 0.833 0% 183
Cyprus Cyprus 10.3 +1.4% 98
Czechia Czechia 32.1 +0.18% 27
Germany Germany 33.4 +0.00001% 25
Djibouti Djibouti 0.129 0% 202
Dominica Dominica 8 0% 112
Denmark Denmark 59 +0.127% 2
Dominican Republic Dominican Republic 18.2 0% 60
Algeria Algeria 3.16 0% 151
Ecuador Ecuador 3.92 -4.88% 147
Egypt Egypt 3.12 +0.845% 152
Eritrea Eritrea 5.7 0% 126
Spain Spain 23.4 +1.22% 45
Estonia Estonia 16.5 +1.05% 64
Ethiopia Ethiopia 14.5 -0.19% 72
Finland Finland 7.37 -0.0892% 116
Fiji Fiji 4.2 0% 143
France France 34.1 -0.554% 23
Faroe Islands Faroe Islands 0.0511 0% 203
Micronesia (Federated States of) Micronesia (Federated States of) 2.86 0% 156
Gabon Gabon 1.26 0% 178
United Kingdom United Kingdom 24.8 -0.207% 40
Georgia Georgia 4.55 +1.28% 137
Ghana Ghana 20.7 0% 52
Guinea Guinea 20.7 +1.54% 53
Gambia Gambia 43.5 0% 10
Guinea-Bissau Guinea-Bissau 14 +1.28% 75
Equatorial Guinea Equatorial Guinea 1.89 0% 168
Greece Greece 14.1 -0.0237% 74
Grenada Grenada 8.82 0% 109
Guatemala Guatemala 14.5 0% 73
Guam Guam 1.85 0% 169
Guyana Guyana 2.13 0% 166
Honduras Honduras 9.1 0% 106
Croatia Croatia 15.2 -0.467% 71
Haiti Haiti 36.5 0% 18
Hungary Hungary 45.6 +0.434% 9
Indonesia Indonesia 9.48 0% 104
Isle of Man Isle of Man 42.3 +3.88% 12
India India 51.9 0% 5
Ireland Ireland 6.47 +2.29% 123
Iran Iran 9.68 0% 103
Iraq Iraq 11.4 0% 89
Iceland Iceland 1.2 0% 179
Italy Italy 24 -1.51% 43
Jamaica Jamaica 11.1 0% 93
Jordan Jordan 2.28 +1.72% 162
Japan Japan 11.2 -0.489% 91
Kazakhstan Kazakhstan 11 0% 95
Kenya Kenya 11.1 -2.44% 94
Kyrgyzstan Kyrgyzstan 6.71 -0.0788% 119
Cambodia Cambodia 23.3 0% 46
Kiribati Kiribati 2.47 0% 161
St. Kitts & Nevis St. Kitts & Nevis 19.2 0% 56
South Korea South Korea 13.5 -1.71% 79
Kuwait Kuwait 0.449 0% 195
Laos Laos 5.3 0% 129
Lebanon Lebanon 13.6 0% 77
Liberia Liberia 5.19 0% 130
Libya Libya 0.978 0% 181
St. Lucia St. Lucia 4.38 0% 139
Liechtenstein Liechtenstein 10.8 0% 96
Sri Lanka Sri Lanka 22.2 0% 47
Lesotho Lesotho 8.76 +20.9% 110
Lithuania Lithuania 36.6 +0.598% 16
Luxembourg Luxembourg 24.1 -0.768% 42
Latvia Latvia 21.8 -0.367% 50
Morocco Morocco 16.8 0% 62
Moldova Moldova 52.4 +0.946% 4
Madagascar Madagascar 5.16 0% 131
Maldives Maldives 13 0% 81
Mexico Mexico 9.77 -5.46% 102
Marshall Islands Marshall Islands 2.78 0% 157
North Macedonia North Macedonia 16.5 -0.24% 65
Mali Mali 6.84 0% 118
Malta Malta 24.4 0% 41
Myanmar (Burma) Myanmar (Burma) 16.8 0% 61
Montenegro Montenegro 0.669 +1.12% 192
Mongolia Mongolia 0.728 +1.23% 189
Northern Mariana Islands Northern Mariana Islands 0.174 0% 201
Mozambique Mozambique 7.18 0% 117
Mauritania Mauritania 0.437 0% 196
Mauritius Mauritius 37.6 0% 15
Malawi Malawi 42.4 0% 11
Malaysia Malaysia 2.51 0% 160
Namibia Namibia 0.972 0% 182
New Caledonia New Caledonia 0.327 0% 197
Niger Niger 14 0% 76
Nigeria Nigeria 40.5 0% 13
Nicaragua Nicaragua 12.5 0% 83
Netherlands Netherlands 29.8 +0.0997% 31
Norway Norway 2.21 0% 163
Nepal Nepal 12.6 -1.78% 82
New Zealand New Zealand 2.02 -13.5% 167
Oman Oman 0.267 +10.6% 200
Pakistan Pakistan 39.2 -0.165% 14
Panama Panama 7.62 0% 113
Peru Peru 3.06 -8.67% 153
Philippines Philippines 18.7 0% 58
Palau Palau 0.652 0% 193
Papua New Guinea Papua New Guinea 0.729 0% 188
Poland Poland 36.5 +0.78% 17
Puerto Rico Puerto Rico 5.66 0% 127
North Korea North Korea 19.1 0% 57
Portugal Portugal 10.2 -3.64% 99
Paraguay Paraguay 11.5 +3.17% 87
French Polynesia French Polynesia 0.72 0% 190
Qatar Qatar 1.83 0% 170
Romania Romania 35.7 -4.39% 19
Russia Russia 7.43 0% 115
Rwanda Rwanda 51.4 0% 6
Saudi Arabia Saudi Arabia 1.6 0% 176
Sudan Sudan 11.2 0% 90
Senegal Senegal 19.9 0% 54
Singapore Singapore 0.78 0% 186
Solomon Islands Solomon Islands 0.822 0% 184
Sierra Leone Sierra Leone 21.9 0% 48
El Salvador El Salvador 34.8 0% 21
San Marino San Marino 33.1 0% 26
Somalia Somalia 1.75 0% 172
Serbia Serbia 30.9 -0.574% 30
South Sudan South Sudan 3.79 0% 149
São Tomé & Príncipe São Tomé & Príncipe 4.17 0% 144
Suriname Suriname 0.312 -13.8% 199
Slovakia Slovakia 27.9 +1.06% 35
Slovenia Slovenia 8.89 +0.0223% 108
Sweden Sweden 6.21 -0.276% 124
Eswatini Eswatini 10.3 0% 97
Seychelles Seychelles 0.326 0% 198
Syria Syria 23.8 -3.7% 44
Turks & Caicos Islands Turks & Caicos Islands 1.05 0% 180
Chad Chad 4.21 0% 142
Togo Togo 48.7 0% 8
Thailand Thailand 33.6 0% 24
Tajikistan Tajikistan 6.04 +0.0955% 125
Turkmenistan Turkmenistan 3.43 +0.928% 150
Timor-Leste Timor-Leste 7.5 0% 114
Tonga Tonga 27.8 0% 36
Trinidad & Tobago Trinidad & Tobago 4.87 0% 135
Tunisia Tunisia 18.2 0% 59
Turkey Turkey 26.2 +1.57% 38
Tanzania Tanzania 15.2 0% 70
Uganda Uganda 34.4 0% 22
Ukraine Ukraine 56.8 0% 3
Uruguay Uruguay 12.1 +4.16% 85
United States United States 16.6 -0.751% 63
Uzbekistan Uzbekistan 9.14 +0.309% 105
St. Vincent & Grenadines St. Vincent & Grenadines 5.13 0% 133
Venezuela Venezuela 2.95 0% 154
British Virgin Islands British Virgin Islands 6.67 0% 120
U.S. Virgin Islands U.S. Virgin Islands 2.57 0% 159
Vietnam Vietnam 21.5 -0.211% 51
Vanuatu Vanuatu 1.64 0% 174
Samoa Samoa 4.06 0% 146
Yemen Yemen 2.19 0% 164
South Africa South Africa 9.89 0% 101
Zambia Zambia 5.11 0% 134
Zimbabwe Zimbabwe 8.06 +1.32% 111

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'AG.LND.ARBL.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'AG.LND.ARBL.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))