Arable land (hectares per person)

Source: worldbank.org, 01.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 0.0186 +0.824% 175
Afghanistan Afghanistan 0.196 -2.33% 68
Angola Angola 0.156 -3.04% 82
Albania Albania 0.213 +0.982% 60
Andorra Andorra 0.00954 -3.99% 188
United Arab Emirates United Arab Emirates 0.00525 +0.786% 196
Argentina Argentina 0.932 +0.209% 4
Armenia Armenia 0.15 -0.158% 84
American Samoa American Samoa 0.0197 +2.14% 173
Antigua & Barbuda Antigua & Barbuda 0.0433 -0.545% 154
Australia Australia 1.22 +1.88% 2
Austria Austria 0.147 -0.826% 86
Azerbaijan Azerbaijan 0.206 -0.216% 62
Burundi Burundi 0.098 -0.574% 111
Belgium Belgium 0.0747 -0.323% 136
Benin Benin 0.209 -2.56% 61
Burkina Faso Burkina Faso 0.277 -0.787% 35
Bangladesh Bangladesh 0.0484 +0.552% 150
Bulgaria Bulgaria 0.538 +0.911% 14
Bahrain Bahrain 0.0014 -2.14% 203
Bahamas Bahamas 0.0202 -0.129% 172
Bosnia & Herzegovina Bosnia & Herzegovina 0.311 +0.977% 29
Belarus Belarus 0.605 +0.19% 12
Belize Belize 0.253 +0.871% 41
Bermuda Bermuda 0.00464 -0.411% 197
Bolivia Bolivia 0.408 +1.31% 21
Brazil Brazil 0.278 +0.651% 34
Barbados Barbados 0.0248 -0.159% 167
Brunei Brunei 0.00886 -0.956% 190
Bhutan Bhutan 0.121 -0.701% 98
Botswana Botswana 0.108 -1.48% 107
Central African Republic Central African Republic 0.352 -1.67% 27
Canada Canada 1 -0.49% 3
Switzerland Switzerland 0.0454 -1.85% 152
Chile Chile 0.0675 -0.213% 140
China China 0.0771 -0.181% 135
Côte d’Ivoire Côte d’Ivoire 0.118 -2.44% 100
Cameroon Cameroon 0.23 -2.62% 51
Congo - Kinshasa Congo - Kinshasa 0.138 -3.19% 91
Congo - Brazzaville Congo - Brazzaville 0.0933 -2.37% 119
Colombia Colombia 0.0389 -3.51% 157
Comoros Comoros 0.0794 -1.96% 133
Cape Verde Cape Verde 0.0968 -0.381% 113
Costa Rica Costa Rica 0.048 -0.507% 151
Cuba Cuba 0.262 +0.487% 39
Cayman Islands Cayman Islands 0.00285 -2.03% 198
Cyprus Cyprus 0.0722 -5.41% 137
Czechia Czechia 0.236 +1.47% 49
Germany Germany 0.14 -0.0937% 90
Djibouti Djibouti 0.00268 -1.43% 199
Dominica Dominica 0.0893 +0.552% 123
Denmark Denmark 0.402 -1.02% 23
Dominican Republic Dominican Republic 0.0788 -1.04% 134
Algeria Algeria 0.168 -1.61% 79
Ecuador Ecuador 0.0579 -2.11% 146
Egypt Egypt 0.0277 -9.91% 163
Eritrea Eritrea 0.206 -1.76% 63
Spain Spain 0.243 -0.944% 42
Estonia Estonia 0.526 +0.758% 15
Ethiopia Ethiopia 0.134 -1.92% 93
Finland Finland 0.405 -0.207% 22
Fiji Fiji 0.0838 -0.191% 131
France France 0.265 -0.356% 38
Faroe Islands Faroe Islands 0.00131 -1.38% 204
Micronesia (Federated States of) Micronesia (Federated States of) 0.0179 -0.634% 180
Gabon Gabon 0.137 -2.28% 92
United Kingdom United Kingdom 0.0897 +0.163% 122
Georgia Georgia 0.0841 +1.03% 129
Ghana Ghana 0.145 -1.96% 89
Guinea Guinea 0.226 -2.47% 54
Gambia Gambia 0.171 -2.34% 77
Guinea-Bissau Guinea-Bissau 0.146 -2.21% 88
Equatorial Guinea Equatorial Guinea 0.0301 -2.41% 162
Greece Greece 0.202 +1.22% 66
Grenada Grenada 0.0257 -0.297% 166
Guatemala Guatemala 0.0883 -1.37% 125
Guam Guam 0.00611 -0.96% 195
Guyana Guyana 0.515 -0.981% 16
Hong Kong SAR China Hong Kong SAR China 0.00027 +0.916% 205
Honduras Honduras 0.0989 -1.65% 110
Croatia Croatia 0.221 -2.72% 56
Haiti Haiti 0.0884 -0.655% 124
Hungary Hungary 0.43 +3.25% 20
Indonesia Indonesia 0.095 -0.702% 116
Isle of Man Isle of Man 0.276 -1.33% 36
India India 0.109 -0.819% 105
Ireland Ireland 0.0853 -3.16% 128
Iran Iran 0.177 -0.578% 76
Iraq Iraq 0.115 -2.22% 102
Iceland Iceland 0.325 -1.63% 28
Israel Israel 0.0402 -2.44% 156
Italy Italy 0.122 +0.425% 97
Jamaica Jamaica 0.0423 -0.245% 155
Jordan Jordan 0.018 -5.06% 179
Japan Japan 0.0325 +0.0204% 159
Kazakhstan Kazakhstan 1.5 -0.935% 1
Kenya Kenya 0.109 -1.88% 106
Kyrgyzstan Kyrgyzstan 0.188 -1.82% 74
Cambodia Cambodia 0.243 -0.749% 45
Kiribati Kiribati 0.0156 -1.77% 182
St. Kitts & Nevis St. Kitts & Nevis 0.107 +0.229% 108
South Korea South Korea 0.0259 -0.538% 165
Kuwait Kuwait 0.00183 +0.904% 200
Laos Laos 0.164 -1.43% 80
Lebanon Lebanon 0.0244 +1.18% 168
Liberia Liberia 0.0951 -2.09% 114
Libya Libya 0.241 -1.26% 46
St. Lucia St. Lucia 0.015 -0.152% 185
Liechtenstein Liechtenstein 0.0442 -0.717% 153
Sri Lanka Sri Lanka 0.0619 -1.07% 143
Lesotho Lesotho 0.19 -1.14% 72
Lithuania Lithuania 0.811 +1.39% 6
Luxembourg Luxembourg 0.0976 -0.965% 112
Latvia Latvia 0.723 +2.96% 8
Morocco Morocco 0.203 -2.46% 65
Moldova Moldova 0.659 +2.18% 11
Madagascar Madagascar 0.101 -2.48% 109
Maldives Maldives 0.00756 -2.72% 194
Mexico Mexico 0.157 -0.601% 81
Marshall Islands Marshall Islands 0.0121 +3.24% 187
North Macedonia North Macedonia 0.227 +1.28% 52
Mali Mali 0.373 -0.765% 26
Malta Malta 0.0151 -0.513% 184
Myanmar (Burma) Myanmar (Burma) 0.206 -0.694% 64
Montenegro Montenegro 0.0142 -1.96% 186
Mongolia Mongolia 0.394 -2.23% 24
Northern Mariana Islands Northern Mariana Islands 0.0017 +1.17% 201
Mozambique Mozambique 0.178 -2.91% 75
Mauritania Mauritania 0.095 -2.85% 115
Mauritius Mauritius 0.0592 -0.0253% 144
Malawi Malawi 0.2 -0.926% 67
Malaysia Malaysia 0.0241 -1.15% 169
Namibia Namibia 0.285 -2.91% 33
New Caledonia New Caledonia 0.0209 -0.364% 171
Niger Niger 0.722 -3.2% 9
Nigeria Nigeria 0.169 -2.07% 78
Nicaragua Nicaragua 0.226 -1.2% 53
Netherlands Netherlands 0.0572 -0.703% 147
Norway Norway 0.149 -0.595% 85
Nepal Nepal 0.0717 -1.72% 138
New Zealand New Zealand 0.121 +16.4% 99
Oman Oman 0.0184 +11.2% 176
Pakistan Pakistan 0.127 -3.2% 96
Panama Panama 0.13 -1.2% 94
Peru Peru 0.129 +7.98% 95
Philippines Philippines 0.0494 -0.902% 149
Palau Palau 0.0169 +0.0506% 181
Papua New Guinea Papua New Guinea 0.0331 -1.97% 158
Poland Poland 0.3 +0.796% 30
Puerto Rico Puerto Rico 0.0154 +0.579% 183
North Korea North Korea 0.0875 -0.367% 126
Portugal Portugal 0.0932 -1.41% 120
Paraguay Paraguay 0.708 -1.2% 10
Palestinian Territories Palestinian Territories 0.00851 -11.4% 191
French Polynesia French Polynesia 0.00894 -0.208% 189
Qatar Qatar 0.00838 +11.5% 193
Romania Romania 0.449 +2% 18
Russia Russia 0.84 +0.344% 5
Rwanda Rwanda 0.095 +2.17% 117
Saudi Arabia Saudi Arabia 0.111 +2.5% 104
Sudan Sudan 0.437 -2.66% 19
Senegal Senegal 0.222 -0.427% 55
Singapore Singapore 0.000103 +4.26% 206
Solomon Islands Solomon Islands 0.0302 -2.37% 161
Sierra Leone Sierra Leone 0.196 -2.25% 69
El Salvador El Salvador 0.115 -0.337% 103
San Marino San Marino 0.058 +1.51% 145
Somalia Somalia 0.0637 -3.59% 142
Serbia Serbia 0.383 +1.37% 25
South Sudan South Sudan 0.22 -1.54% 57
São Tomé & Príncipe São Tomé & Príncipe 0.018 -2.04% 178
Suriname Suriname 0.0939 -4.21% 118
Slovakia Slovakia 0.243 -1.28% 43
Slovenia Slovenia 0.0858 -0.313% 127
Sweden Sweden 0.243 -0.731% 44
Eswatini Eswatini 0.147 -1.15% 87
Seychelles Seychelles 0.00151 -0.802% 202
Syria Syria 0.215 -2.68% 58
Turks & Caicos Islands Turks & Caicos Islands 0.0221 -1.89% 170
Chad Chad 0.297 -3.39% 32
Togo Togo 0.298 -2.35% 31
Thailand Thailand 0.239 +0.928% 47
Tajikistan Tajikistan 0.0841 -2.35% 130
Turkmenistan Turkmenistan 0.274 -2% 37
Timor-Leste Timor-Leste 0.0826 -1.78% 132
Tonga Tonga 0.19 +0.203% 73
Trinidad & Tobago Trinidad & Tobago 0.0183 -0.0609% 177
Tunisia Tunisia 0.235 -0.619% 50
Turkey Turkey 0.236 +0.586% 48
Tanzania Tanzania 0.215 -2.96% 59
Uganda Uganda 0.15 -3.17% 83
Ukraine Ukraine 0.743 +0.861% 7
Uruguay Uruguay 0.598 +0.374% 13
United States United States 0.475 -0.157% 17
Uzbekistan Uzbekistan 0.117 -2.09% 101
St. Vincent & Grenadines St. Vincent & Grenadines 0.0194 +0.666% 174
Venezuela Venezuela 0.0921 +0.73% 121
British Virgin Islands British Virgin Islands 0.0264 -1.78% 164
U.S. Virgin Islands U.S. Virgin Islands 0.0085 +0.397% 192
Vietnam Vietnam 0.0686 -0.865% 139
Vanuatu Vanuatu 0.0654 -2.29% 141
Samoa Samoa 0.0528 -0.858% 148
Yemen Yemen 0.0312 -2.71% 160
South Africa South Africa 0.195 -1.53% 70
Zambia Zambia 0.194 -2.78% 71
Zimbabwe Zimbabwe 0.253 -1.71% 40

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'AG.LND.ARBL.HA.PC'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'AG.LND.ARBL.HA.PC'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))