Arable land (hectares)

Source: worldbank.org, 01.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Aruba Aruba 2,000 0% 180
Afghanistan Afghanistan 7,829,000 0% 32
Angola Angola 5,373,000 +0.0931% 45
Albania Albania 599,900 +0.05% 121
Andorra Andorra 748 -2.77% 186
United Arab Emirates United Arab Emirates 50,300 +2.65% 157
Argentina Argentina 42,208,760 +0.476% 6
Armenia Armenia 443,420 -0.131% 126
American Samoa American Samoa 970 +1.04% 184
Antigua & Barbuda Antigua & Barbuda 4,000 0% 174
Australia Australia 31,265,000 +2.03% 10
Austria Austria 1,319,765 -0.393% 96
Azerbaijan Azerbaijan 2,089,000 +0.225% 81
Burundi Burundi 1,270,000 +2.17% 99
Belgium Belgium 865,640 +0.0883% 111
Benin Benin 2,800,000 0% 68
Burkina Faso Burkina Faso 6,100,000 +1.6% 39
Bangladesh Bangladesh 8,110,000 +1.38% 31
Bulgaria Bulgaria 3,500,476 +0.243% 60
Bahrain Bahrain 2,100 0% 179
Bahamas Bahamas 8,000 0% 168
Bosnia & Herzegovina Bosnia & Herzegovina 1,008,000 -0.69% 106
Belarus Belarus 5,624,000 -0.636% 43
Belize Belize 100,000 +2.04% 147
Bermuda Bermuda 300 0% 189
Bolivia Bolivia 4,868,367 +2.35% 48
Brazil Brazil 58,252,760 +1.08% 5
Barbados Barbados 7,000 0% 170
Brunei Brunei 4,000 0% 174
Bhutan Bhutan 94,000 0% 149
Botswana Botswana 260,000 0% 138
Central African Republic Central African Republic 1,800,000 0% 85
Canada Canada 38,259,000 +0.0628% 7
Switzerland Switzerland 395,465 -1.09% 132
Chile Chile 1,313,900 +0.228% 97
China China 108,862,000 -0.0918% 4
Côte d’Ivoire Côte d’Ivoire 3,500,000 0% 61
Cameroon Cameroon 6,200,000 0% 38
Congo - Kinshasa Congo - Kinshasa 13,680,000 0% 22
Congo - Brazzaville Congo - Brazzaville 550,000 0% 123
Colombia Colombia 1,993,000 -2.45% 83
Comoros Comoros 65,000 0% 153
Cape Verde Cape Verde 50,000 0% 159
Costa Rica Costa Rica 243,000 0% 139
Cuba Cuba 2,908,600 0% 66
Cayman Islands Cayman Islands 200 0% 190
Cyprus Cyprus 95,157 -4.32% 148
Czechia Czechia 2,475,335 -0.355% 73
Germany Germany 11,658,000 -0.0514% 25
Djibouti Djibouti 3,000 0% 176
Dominica Dominica 6,000 0% 171
Denmark Denmark 2,357,000 -0.588% 75
Dominican Republic Dominican Republic 877,000 0% 110
Algeria Algeria 7,530,600 0% 33
Ecuador Ecuador 1,024,000 -1.35% 104
Egypt Egypt 3,077,000 -8.56% 64
Eritrea Eritrea 690,000 0% 119
Spain Spain 11,550,053 -0.768% 26
Estonia Estonia 700,000 +0.865% 118
Ethiopia Ethiopia 16,314,000 +0.734% 20
Finland Finland 2,243,000 0% 78
Fiji Fiji 76,800 0% 151
France France 17,956,560 0% 17
Faroe Islands Faroe Islands 70 0% 193
Micronesia (Federated States of) Micronesia (Federated States of) 2,000 0% 180
Gabon Gabon 325,000 0% 135
United Kingdom United Kingdom 6,009,804 +0.524% 40
Georgia Georgia 312,000 +0.645% 136
Ghana Ghana 4,708,900 -0.0212% 50
Guinea Guinea 3,100,000 0% 63
Gambia Gambia 440,000 0% 127
Guinea-Bissau Guinea-Bissau 300,000 0% 137
Equatorial Guinea Equatorial Guinea 53,000 0% 156
Greece Greece 2,131,930 0% 79
Grenada Grenada 3,000 0% 176
Guatemala Guatemala 1,554,000 0% 89
Guam Guam 1,000 0% 183
Guyana Guyana 420,000 0% 130
Hong Kong SAR China Hong Kong SAR China 2,000 0% 180
Honduras Honduras 1,018,000 0% 105
Croatia Croatia 857,000 -3.6% 112
Haiti Haiti 1,005,000 +0.5% 107
Hungary Hungary 4,139,704 +2.83% 53
Indonesia Indonesia 26,300,000 0% 13
Isle of Man Isle of Man 23,200 -1.28% 162
India India 154,447,948 0% 2
Ireland Ireland 436,000 -1.8% 128
Iran Iran 15,699,000 +0.251% 21
Iraq Iraq 4,969,000 0% 47
Iceland Iceland 121,000 0% 144
Israel Israel 377,000 -0.789% 133
Italy Italy 7,192,812 -0.0917% 35
Jamaica Jamaica 120,000 0% 145
Jordan Jordan 199,200 -3.3% 140
Japan Japan 4,086,000 -0.439% 55
Kazakhstan Kazakhstan 29,669,700 +0.394% 12
Kenya Kenya 5,800,000 0% 41
Kyrgyzstan Kyrgyzstan 1,287,400 0% 98
Cambodia Cambodia 4,120,140 +0.727% 54
Kiribati Kiribati 2,000 0% 180
St. Kitts & Nevis St. Kitts & Nevis 5,000 0% 173
South Korea South Korea 1,343,000 -0.666% 93
Kuwait Kuwait 8,000 0% 168
Laos Laos 1,224,000 0% 101
Lebanon Lebanon 139,300 +1.46% 143
Liberia Liberia 500,000 0% 124
Libya Libya 1,720,000 0% 86
St. Lucia St. Lucia 2,670 0% 177
Liechtenstein Liechtenstein 1,730 0% 182
Sri Lanka Sri Lanka 1,372,000 0% 91
Lesotho Lesotho 429,000 0% 129
Lithuania Lithuania 2,279,000 +1.32% 77
Luxembourg Luxembourg 62,472 +0.55% 154
Latvia Latvia 1,362,000 +2.1% 92
Morocco Morocco 7,512,000 -1.47% 34
Moldova Moldova 1,711,000 +0.659% 87
Madagascar Madagascar 3,000,000 0% 65
Maldives Maldives 3,900 0% 175
Mexico Mexico 20,084,000 +0.0648% 15
Marshall Islands Marshall Islands 500 0% 188
North Macedonia North Macedonia 417,000 +0.24% 131
Mali Mali 8,341,000 +2.32% 30
Malta Malta 7,800 0% 169
Myanmar (Burma) Myanmar (Burma) 10,990,000 0% 28
Montenegro Montenegro 8,900 -2.2% 167
Mongolia Mongolia 1,332,800 -0.573% 94
Northern Mariana Islands Northern Mariana Islands 80 0% 192
Mozambique Mozambique 5,650,000 0% 42
Mauritania Mauritania 450,000 0% 125
Mauritius Mauritius 75,000 0% 152
Malawi Malawi 4,000,000 +1.68% 57
Malaysia Malaysia 826,000 0% 114
Namibia Namibia 800,000 0% 116
New Caledonia New Caledonia 5,970 0% 172
Niger Niger 17,700,000 0% 18
Nigeria Nigeria 36,872,000 0% 8
Nicaragua Nicaragua 1,503,000 0% 90
Netherlands Netherlands 1,003,000 -0.182% 108
Norway Norway 804,000 -0.0618% 115
Nepal Nepal 2,113,700 0% 80
New Zealand New Zealand 616,000 +16.9% 120
Oman Oman 82,610 +10.6% 150
Pakistan Pakistan 30,510,000 -1.36% 11
Panama Panama 565,000 0% 122
Peru Peru 4,290,296 +9.02% 52
Philippines Philippines 5,590,000 0% 44
Palau Palau 300 0% 189
Papua New Guinea Papua New Guinea 331,000 0% 134
Poland Poland 11,078,760 -0.639% 27
Puerto Rico Puerto Rico 50,200 0% 158
North Korea North Korea 2,295,000 0% 76
Portugal Portugal 965,234 -0.789% 109
Paraguay Paraguay 4,734,000 0% 49
Palestinian Territories Palestinian Territories 41,900 -9.24% 160
French Polynesia French Polynesia 2,500 0% 178
Qatar Qatar 21,000 0% 164
Romania Romania 8,588,000 +1.24% 29
Russia Russia 121,649,000 0% 3
Rwanda Rwanda 1,268,400 +4.43% 100
Saudi Arabia Saudi Arabia 3,430,000 0% 62
Sudan Sudan 20,994,840 0% 14
Senegal Senegal 3,830,000 +2.13% 58
Singapore Singapore 560 0% 187
Solomon Islands Solomon Islands 23,000 0% 163
Sierra Leone Sierra Leone 1,584,000 0% 88
El Salvador El Salvador 721,000 0% 117
San Marino San Marino 1,985 0% 181
Somalia Somalia 1,100,000 0% 103
Serbia Serbia 2,615,000 +0.422% 70
South Sudan South Sudan 2,394,700 0% 74
São Tomé & Príncipe São Tomé & Príncipe 4,000 0% 174
Suriname Suriname 58,000 -3.33% 155
Slovakia Slovakia 1,326,000 -1.49% 95
Slovenia Slovenia 180,950 -0.0442% 141
Sweden Sweden 2,535,170 -0.133% 72
Eswatini Eswatini 177,000 0% 142
Seychelles Seychelles 150 0% 191
Syria Syria 4,660,617 0% 51
Turks & Caicos Islands Turks & Caicos Islands 1,000 0% 183
Chad Chad 5,300,000 0% 46
Togo Togo 2,650,000 0% 69
Thailand Thailand 17,150,000 +1.05% 19
Tajikistan Tajikistan 838,000 -0.167% 113
Turkmenistan Turkmenistan 1,940,000 0% 84
Timor-Leste Timor-Leste 111,500 0% 146
Tonga Tonga 20,000 0% 165
Trinidad & Tobago Trinidad & Tobago 25,000 0% 161
Tunisia Tunisia 2,831,300 0% 67
Turkey Turkey 19,881,000 +1.51% 16
Tanzania Tanzania 13,502,500 0% 23
Uganda Uganda 6,900,000 0% 36
Ukraine Ukraine 32,924,000 0% 9
Uruguay Uruguay 2,030,605 +0.307% 82
United States United States 157,736,800 0% 1
Uzbekistan Uzbekistan 4,016,100 -0.172% 56
St. Vincent & Grenadines St. Vincent & Grenadines 2,000 0% 180
Venezuela Venezuela 2,600,000 0% 71
British Virgin Islands British Virgin Islands 1,000 0% 183
U.S. Virgin Islands U.S. Virgin Islands 900 0% 185
Vietnam Vietnam 6,787,000 0% 37
Vanuatu Vanuatu 20,000 0% 165
Samoa Samoa 11,290 0% 166
Yemen Yemen 1,158,000 0% 102
South Africa South Africa 12,000,000 0% 24
Zambia Zambia 3,800,000 0% 59
Zimbabwe Zimbabwe 4,000,000 0% 57

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'AG.LND.ARBL.HA'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'AG.LND.ARBL.HA'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))