Annual freshwater withdrawals, total (% of internal resources)

Source: worldbank.org, 01.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 43 0% 37
Angola Angola 0.477 0% 164
Albania Albania 2.96 +1.27% 123
United Arab Emirates United Arab Emirates 1,533 -3.4% 4
Argentina Argentina 12.9 0% 79
Armenia Armenia 43.3 +4.84% 36
Antigua & Barbuda Antigua & Barbuda 8.46 0% 92
Australia Australia 2.33 +31.9% 130
Austria Austria 5.71 0% 103
Azerbaijan Azerbaijan 160 +6.27% 15
Burundi Burundi 2.78 0% 126
Belgium Belgium 35.2 0% 44
Benin Benin 1.26 0% 148
Burkina Faso Burkina Faso 6.54 0% 97
Bangladesh Bangladesh 34.2 0% 45
Bulgaria Bulgaria 24.2 0% 53
Bahrain Bahrain 3,878 0% 2
Bosnia & Herzegovina Bosnia & Herzegovina 0.863 +1.77% 155
Belarus Belarus 4.19 +7.3% 112
Belize Belize 0.662 0% 161
Bolivia Bolivia 0.726 -0.192% 159
Brazil Brazil 1.19 +0.179% 149
Barbados Barbados 87.5 0% 20
Brunei Brunei 1.08 0% 152
Bhutan Bhutan 0.433 0% 165
Botswana Botswana 9.73 +5.99% 88
Central African Republic Central African Republic 0.0514 0% 175
Canada Canada 1.27 0% 147
Switzerland Switzerland 4.22 0% 111
Chile Chile 4 0% 113
China China 20.2 0% 59
Côte d’Ivoire Côte d’Ivoire 1.51 0% 141
Cameroon Cameroon 0.399 0% 166
Congo - Kinshasa Congo - Kinshasa 0.076 0% 173
Congo - Brazzaville Congo - Brazzaville 0.0207 0% 177
Colombia Colombia 1.37 +2.52% 145
Comoros Comoros 0.833 0% 157
Cape Verde Cape Verde 57.2 -17.1% 29
Costa Rica Costa Rica 3.05 +9.91% 120
Cuba Cuba 18.3 0% 64
Cyprus Cyprus 30.1 +1.73% 47
Czechia Czechia 10.3 -1.24% 86
Germany Germany 24.1 0% 54
Djibouti Djibouti 6.33 0% 99
Dominica Dominica 10 0% 87
Denmark Denmark 16.3 0% 70
Dominican Republic Dominican Republic 30.4 0% 46
Algeria Algeria 87.2 0% 21
Ecuador Ecuador 2.24 0% 131
Egypt Egypt 7,750 0% 1
Eritrea Eritrea 20.8 0% 58
Spain Spain 26.1 0% 49
Estonia Estonia 7.87 +17.2% 95
Ethiopia Ethiopia 8.65 0% 90
Finland Finland 2.8 0% 125
Fiji Fiji 0.297 0% 168
France France 12.3 0% 81
Gabon Gabon 0.0848 0% 171
United Kingdom United Kingdom 5.81 0% 102
Georgia Georgia 2.77 -2.71% 127
Ghana Ghana 4.78 0% 107
Guinea Guinea 0.394 0% 167
Gambia Gambia 3.39 0% 117
Guinea-Bissau Guinea-Bissau 1.09 0% 151
Equatorial Guinea Equatorial Guinea 0.0762 0% 172
Greece Greece 17.6 +1.01% 66
Grenada Grenada 7.05 0% 96
Guatemala Guatemala 3.04 0% 121
Guyana Guyana 0.599 0% 163
Honduras Honduras 1.77 0% 137
Croatia Croatia 1.76 +1.06% 138
Haiti Haiti 11.1 0% 84
Hungary Hungary 77.9 0% 24
Indonesia Indonesia 11 0% 85
India India 44.8 0% 35
Ireland Ireland 3.23 +2.4% 119
Iran Iran 72.3 0% 26
Iraq Iraq 121 -5.81% 17
Iceland Iceland 0.171 0% 169
Israel Israel 204 +19.9% 12
Italy Italy 18.4 0% 63
Jamaica Jamaica 12.4 +12.1% 80
Jordan Jordan 136 -3.33% 16
Japan Japan 18.2 0% 65
Kazakhstan Kazakhstan 38.2 0% 41
Kenya Kenya 19.5 0% 60
Kyrgyzstan Kyrgyzstan 15.8 0% 73
Cambodia Cambodia 1.81 0% 136
St. Kitts & Nevis St. Kitts & Nevis 50.8 0% 32
South Korea South Korea 45 0% 34
Laos Laos 3.86 0% 116
Lebanon Lebanon 37.8 0% 42
Liberia Liberia 0.073 0% 174
Libya Libya 817 0% 6
St. Lucia St. Lucia 14.3 0% 75
Sri Lanka Sri Lanka 24.5 0% 52
Lesotho Lesotho 0.837 0% 156
Lithuania Lithuania 1.65 0% 139
Luxembourg Luxembourg 4.78 0% 108
Latvia Latvia 1.07 0% 153
Morocco Morocco 36.5 0% 43
Moldova Moldova 52.2 0% 31
Madagascar Madagascar 3.99 0% 114
Maldives Maldives 15.7 0% 74
Mexico Mexico 22 +0.442% 56
North Macedonia North Macedonia 29.1 -0.956% 48
Mali Mali 8.64 0% 91
Malta Malta 78.3 -4.07% 23
Myanmar (Burma) Myanmar (Burma) 3.31 0% 118
Mongolia Mongolia 1.33 0% 146
Mozambique Mozambique 1.47 0% 143
Mauritania Mauritania 337 0% 10
Mauritius Mauritius 22 -0.494% 57
Malawi Malawi 8.41 0% 93
Malaysia Malaysia 1.16 0% 150
Namibia Namibia 4.58 0% 109
Niger Niger 73.8 0% 25
Nigeria Nigeria 5.64 0% 104
Nicaragua Nicaragua 0.815 0% 158
Netherlands Netherlands 72.2 -4.33% 27
Norway Norway 0.692 -1.56% 160
Nepal Nepal 4.79 0% 106
New Zealand New Zealand 3.02 0% 122
Oman Oman 117 0% 18
Pakistan Pakistan 480 +39.3% 8
Panama Panama 0.887 0% 154
Peru Peru 2.35 0% 129
Philippines Philippines 18.6 +1.74% 61
Papua New Guinea Papua New Guinea 0.049 0% 176
Poland Poland 17.3 +6.92% 67
Puerto Rico Puerto Rico 12.3 0% 82
North Korea North Korea 12.9 0% 78
Portugal Portugal 16.1 0% 71
Paraguay Paraguay 2.06 0% 132
Palestinian Territories Palestinian Territories 41.2 -4.99% 38
Qatar Qatar 446 0% 9
Romania Romania 18.6 +6.33% 62
Russia Russia 1.5 0% 142
Rwanda Rwanda 6.42 0% 98
Saudi Arabia Saudi Arabia 974 0% 5
Sudan Sudan 673 0% 7
Senegal Senegal 11.9 0% 83
Singapore Singapore 83.1 0% 22
Sierra Leone Sierra Leone 0.133 0% 170
El Salvador El Salvador 13.6 0% 77
Somalia Somalia 55 0% 30
Serbia Serbia 60.1 -4.97% 28
South Sudan South Sudan 2.53 0% 128
São Tomé & Príncipe São Tomé & Príncipe 1.88 0% 135
Suriname Suriname 0.622 0% 162
Slovakia Slovakia 4.49 +2.03% 110
Slovenia Slovenia 4.99 -7.18% 105
Sweden Sweden 1.45 0% 144
Eswatini Eswatini 40.5 0% 39
Syria Syria 196 0% 13
Chad Chad 5.86 0% 101
Togo Togo 1.94 0% 134
Thailand Thailand 25.5 0% 51
Tajikistan Tajikistan 16.7 0% 69
Turkmenistan Turkmenistan 1,868 0% 3
Timor-Leste Timor-Leste 14.3 0% 76
Trinidad & Tobago Trinidad & Tobago 8.76 0% 89
Tunisia Tunisia 92.1 0% 19
Turkey Turkey 25.7 -8.03% 50
Tanzania Tanzania 6.17 0% 100
Uganda Uganda 1.63 0% 140
Ukraine Ukraine 17.2 0% 68
Uruguay Uruguay 3.97 0% 115
United States United States 15.8 0% 72
Uzbekistan Uzbekistan 260 -15% 11
St. Vincent & Grenadines St. Vincent & Grenadines 7.9 0% 94
Venezuela Venezuela 2.81 0% 124
Vietnam Vietnam 22.8 0% 55
Yemen Yemen 170 0% 14
South Africa South Africa 46.6 +2.86% 33
Zambia Zambia 1.96 0% 133
Zimbabwe Zimbabwe 40 0% 40

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'ER.H2O.FWTL.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'ER.H2O.FWTL.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))