Annual freshwater withdrawals, total (billion cubic meters)

Source: worldbank.org, 01.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 20.3 0% 36
Angola Angola 0.706 0% 125
Albania Albania 0.796 +1.27% 123
United Arab Emirates United Arab Emirates 2.3 -3.4% 86
Argentina Argentina 37.7 0% 19
Armenia Armenia 2.97 +4.84% 81
Antigua & Barbuda Antigua & Barbuda 0.0044 0% 181
Australia Australia 11.4 +31.9% 42
Austria Austria 3.14 0% 78
Azerbaijan Azerbaijan 13 +6.27% 39
Burundi Burundi 0.28 0% 144
Belgium Belgium 4.22 0% 70
Benin Benin 0.13 0% 158
Burkina Faso Burkina Faso 0.818 0% 122
Bangladesh Bangladesh 35.9 0% 21
Bulgaria Bulgaria 5.08 0% 66
Bahrain Bahrain 0.155 0% 155
Bosnia & Herzegovina Bosnia & Herzegovina 0.306 +1.77% 141
Belarus Belarus 1.43 +7.3% 103
Belize Belize 0.101 0% 160
Bolivia Bolivia 2.2 -0.192% 87
Brazil Brazil 67.3 +0.179% 12
Barbados Barbados 0.07 0% 164
Brunei Brunei 0.092 0% 161
Bhutan Bhutan 0.338 0% 138
Botswana Botswana 0.234 +5.99% 148
Central African Republic Central African Republic 0.0725 0% 163
Canada Canada 36.3 0% 20
Switzerland Switzerland 1.7 0% 91
Chile Chile 35.4 0% 22
China China 568 0% 2
Côte d’Ivoire Côte d’Ivoire 1.16 0% 111
Cameroon Cameroon 1.09 0% 112
Congo - Kinshasa Congo - Kinshasa 0.684 0% 126
Congo - Brazzaville Congo - Brazzaville 0.046 0% 166
Colombia Colombia 29.3 +2.52% 25
Comoros Comoros 0.01 0% 177
Cape Verde Cape Verde 0.172 -17.1% 153
Costa Rica Costa Rica 3.45 +9.91% 75
Cuba Cuba 6.96 0% 60
Cyprus Cyprus 0.235 +1.73% 147
Czechia Czechia 1.35 -1.24% 105
Germany Germany 25.8 0% 30
Djibouti Djibouti 0.019 0% 173
Dominica Dominica 0.02 0% 171
Denmark Denmark 0.976 0% 115
Dominican Republic Dominican Republic 7.14 0% 59
Algeria Algeria 9.8 0% 49
Ecuador Ecuador 9.92 0% 47
Egypt Egypt 77.5 0% 11
Eritrea Eritrea 0.582 0% 133
Spain Spain 29 0% 27
Estonia Estonia 1 +17.2% 114
Ethiopia Ethiopia 10.5 0% 45
Finland Finland 3 0% 80
Fiji Fiji 0.0849 0% 162
France France 24.7 0% 31
Gabon Gabon 0.139 0% 157
United Kingdom United Kingdom 8.42 0% 54
Georgia Georgia 1.61 -2.71% 93
Ghana Ghana 1.45 0% 101
Guinea Guinea 0.89 0% 118
Gambia Gambia 0.102 0% 159
Guinea-Bissau Guinea-Bissau 0.175 0% 152
Equatorial Guinea Equatorial Guinea 0.0198 0% 172
Greece Greece 10.2 +1.01% 46
Grenada Grenada 0.0141 0% 174
Guatemala Guatemala 3.32 0% 76
Guyana Guyana 1.44 0% 102
Honduras Honduras 1.61 0% 94
Croatia Croatia 0.665 +1.06% 127
Haiti Haiti 1.45 0% 100
Hungary Hungary 4.67 0% 69
Indonesia Indonesia 223 0% 5
India India 648 0% 1
Ireland Ireland 1.58 +2.4% 95
Iran Iran 93 0% 6
Iraq Iraq 42.4 -5.81% 17
Iceland Iceland 0.29 0% 142
Israel Israel 1.53 +19.9% 98
Italy Italy 33.6 0% 23
Jamaica Jamaica 1.34 +12.1% 107
Jordan Jordan 0.926 -3.33% 117
Japan Japan 78.4 0% 10
Kazakhstan Kazakhstan 24.6 0% 32
Kenya Kenya 4.03 0% 71
Kyrgyzstan Kyrgyzstan 7.71 0% 57
Cambodia Cambodia 2.18 0% 88
St. Kitts & Nevis St. Kitts & Nevis 0.0122 0% 175
South Korea South Korea 29.2 0% 26
Kuwait Kuwait 0.77 0% 124
Laos Laos 7.35 0% 58
Lebanon Lebanon 1.81 0% 90
Liberia Liberia 0.146 0% 156
Libya Libya 5.72 0% 63
St. Lucia St. Lucia 0.0429 0% 168
Sri Lanka Sri Lanka 12.9 0% 40
Lesotho Lesotho 0.0438 0% 167
Lithuania Lithuania 0.254 0% 145
Luxembourg Luxembourg 0.0478 0% 165
Latvia Latvia 0.181 0% 151
Morocco Morocco 10.6 0% 44
Monaco Monaco 0.005 0% 179
Moldova Moldova 0.846 0% 121
Madagascar Madagascar 13.5 0% 38
Maldives Maldives 0.0047 0% 180
Mexico Mexico 89.9 +0.442% 7
North Macedonia North Macedonia 1.57 -0.956% 97
Mali Mali 5.19 0% 64
Malta Malta 0.0395 -4.07% 170
Myanmar (Burma) Myanmar (Burma) 33.2 0% 24
Montenegro Montenegro 0.161 0% 154
Mongolia Mongolia 0.462 0% 136
Mozambique Mozambique 1.47 0% 99
Mauritania Mauritania 1.35 0% 106
Mauritius Mauritius 0.604 -0.494% 132
Malawi Malawi 1.36 0% 104
Malaysia Malaysia 6.71 0% 61
Namibia Namibia 0.282 0% 143
Niger Niger 2.58 0% 83
Nigeria Nigeria 12.5 0% 41
Nicaragua Nicaragua 1.27 0% 108
Netherlands Netherlands 7.95 -4.33% 55
Norway Norway 2.64 -1.56% 82
Nepal Nepal 9.5 0% 50
New Zealand New Zealand 9.88 0% 48
Oman Oman 1.63 0% 92
Pakistan Pakistan 264 +39.3% 4
Panama Panama 1.21 0% 109
Peru Peru 38.6 0% 18
Philippines Philippines 89 +1.74% 8
Papua New Guinea Papua New Guinea 0.392 0% 137
Poland Poland 9.27 +6.92% 52
Puerto Rico Puerto Rico 0.875 0% 120
North Korea North Korea 8.66 0% 53
Portugal Portugal 6.13 0% 62
Paraguay Paraguay 2.41 0% 85
Palestinian Territories Palestinian Territories 0.335 -4.99% 140
Qatar Qatar 0.25 0% 146
Romania Romania 7.86 +6.33% 56
Russia Russia 64.8 0% 13
Rwanda Rwanda 0.61 0% 131
Saudi Arabia Saudi Arabia 23.4 0% 33
Sudan Sudan 26.9 0% 28
Senegal Senegal 3.06 0% 79
Singapore Singapore 0.499 0% 135
Sierra Leone Sierra Leone 0.212 0% 150
El Salvador El Salvador 2.12 0% 89
Somalia Somalia 3.3 0% 77
Serbia Serbia 5.05 -4.97% 67
South Sudan South Sudan 0.658 0% 128
São Tomé & Príncipe São Tomé & Príncipe 0.0409 0% 169
Suriname Suriname 0.616 0% 130
Slovakia Slovakia 0.566 +2.03% 134
Slovenia Slovenia 0.931 -7.18% 116
Sweden Sweden 2.48 0% 84
Eswatini Eswatini 1.07 0% 113
Seychelles Seychelles 0.0113 0% 176
Syria Syria 14 0% 37
Chad Chad 0.88 0% 119
Togo Togo 0.223 0% 149
Thailand Thailand 57.3 0% 15
Tajikistan Tajikistan 10.6 0% 43
Turkmenistan Turkmenistan 26.2 0% 29
Timor-Leste Timor-Leste 1.17 0% 110
Trinidad & Tobago Trinidad & Tobago 0.336 0% 139
Tunisia Tunisia 3.86 0% 72
Turkey Turkey 58.4 -8.03% 14
Tanzania Tanzania 5.18 0% 65
Uganda Uganda 0.637 0% 129
Ukraine Ukraine 9.46 0% 51
Uruguay Uruguay 3.66 0% 73
United States United States 444 0% 3
Uzbekistan Uzbekistan 42.5 -15% 16
St. Vincent & Grenadines St. Vincent & Grenadines 0.0079 0% 178
Venezuela Venezuela 22.6 0% 34
Vietnam Vietnam 81.9 0% 9
Yemen Yemen 3.57 0% 74
South Africa South Africa 20.9 +2.86% 35
Zambia Zambia 1.57 0% 96
Zimbabwe Zimbabwe 4.91 0% 68

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'ER.H2O.FWTL.K3'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'ER.H2O.FWTL.K3'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))