Annual freshwater withdrawals, industry (% of total freshwater withdrawal)

Source: worldbank.org, 03.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 0.832 0% 158
Angola Angola 33.9 0% 35
Albania Albania 1.26 -38.3% 153
United Arab Emirates United Arab Emirates 0.755 +1.65% 160
Argentina Argentina 10.6 0% 79
Armenia Armenia 3.71 -43.6% 118
Antigua & Barbuda Antigua & Barbuda 21.7 0% 48
Australia Australia 18.1 -12.3% 60
Austria Austria 70.4 0% 11
Azerbaijan Azerbaijan 4.61 -0.571% 111
Burundi Burundi 5.36 0% 102
Belgium Belgium 82.1 0% 2
Benin Benin 12.8 0% 71
Burkina Faso Burkina Faso 2.65 0% 127
Bangladesh Bangladesh 2.15 0% 133
Bulgaria Bulgaria 70 +2.17% 12
Bahrain Bahrain 3.25 0% 124
Belarus Belarus 30.2 -2.66% 38
Belize Belize 21 0% 51
Bolivia Bolivia 1.45 +0.192% 151
Brazil Brazil 14.5 +2.67% 67
Barbados Barbados 7.65 0% 88
Bhutan Bhutan 0.888 0% 157
Botswana Botswana 11.8 -12.6% 74
Central African Republic Central African Republic 16.6 0% 62
Canada Canada 74.2 0% 4
Switzerland Switzerland 37.4 +1.46% 31
Chile Chile 5.13 0% 103
China China 17.7 0% 61
Côte d’Ivoire Côte d’Ivoire 20.8 0% 53
Cameroon Cameroon 9.61 0% 81
Congo - Kinshasa Congo - Kinshasa 21.5 0% 49
Congo - Brazzaville Congo - Brazzaville 26.2 0% 42
Colombia Colombia 1.09 -4.26% 156
Comoros Comoros 5 0% 106
Cape Verde Cape Verde 2.2 +22.5% 131
Costa Rica Costa Rica 7.12 -4.13% 91
Cuba Cuba 10.6 0% 78
Cyprus Cyprus 5.88 -4.84% 99
Czechia Czechia 50.8 -0.626% 20
Germany Germany 54.3 0% 17
Djibouti Djibouti 0 173
Dominica Dominica 0 173
Denmark Denmark 5.02 0% 105
Dominican Republic Dominican Republic 7.27 0% 90
Algeria Algeria 1.83 0% 138
Ecuador Ecuador 5.54 0% 100
Egypt Egypt 6.97 0% 93
Eritrea Eritrea 0.172 0% 166
Spain Spain 19 0% 57
Estonia Estonia 92.3 +0.263% 1
Ethiopia Ethiopia 0.484 0% 162
Finland Finland 57.1 0% 16
Fiji Fiji 11.3 0% 76
France France 64.3 0% 14
Gabon Gabon 10.1 0% 80
United Kingdom United Kingdom 12 0% 73
Georgia Georgia 20.2 -1.69% 55
Ghana Ghana 6.49 0% 95
Guinea Guinea 6.74 0% 94
Gambia Gambia 20.9 0% 52
Guinea-Bissau Guinea-Bissau 6.26 0% 98
Equatorial Guinea Equatorial Guinea 15.2 0% 66
Greece Greece 2.9 -10.4% 125
Grenada Grenada 0 173
Guatemala Guatemala 18.1 0% 59
Guyana Guyana 1.41 0% 152
Honduras Honduras 7.09 0% 92
Croatia Croatia 48.5 -2.02% 22
Haiti Haiti 3.52 0% 120
Hungary Hungary 74.1 0% 5
Indonesia Indonesia 4.1 0% 115
India India 2.23 0% 130
Ireland Ireland 33.4 -0.546% 37
Iran Iran 1.18 0% 155
Iraq Iraq 10.7 +24.9% 77
Iceland Iceland 71.1 0% 10
Israel Israel 4 -8.4% 116
Italy Italy 22.7 0% 46
Jamaica Jamaica 9.5 +47.9% 83
Jordan Jordan 3.34 0% 123
Japan Japan 13.2 0% 70
Kazakhstan Kazakhstan 18.5 0% 58
Kenya Kenya 7.51 0% 89
Kyrgyzstan Kyrgyzstan 4.39 0% 112
Cambodia Cambodia 1.51 0% 146
St. Kitts & Nevis St. Kitts & Nevis 0 173
South Korea South Korea 16.4 0% 63
Kuwait Kuwait 1.86 0% 137
Laos Laos 2.31 0% 129
Lebanon Lebanon 48.9 0% 21
Liberia Liberia 36.6 0% 32
Libya Libya 4.8 0% 109
St. Lucia St. Lucia 0 173
Sri Lanka Sri Lanka 6.42 0% 96
Lesotho Lesotho 45.7 0% 24
Lithuania Lithuania 23.7 0% 45
Luxembourg Luxembourg 0 173
Latvia Latvia 20.5 0% 54
Morocco Morocco 2.03 0% 134
Monaco Monaco 0 173
Moldova Moldova 73.1 +0.251% 8
Madagascar Madagascar 1.19 0% 154
Maldives Maldives 5.08 0% 104
Mexico Mexico 9.55 -0.0795% 82
North Macedonia North Macedonia 1.55 -55.5% 145
Mali Mali 0.0771 0% 168
Malta Malta 1.63 +2.75% 144
Myanmar (Burma) Myanmar (Burma) 1.49 0% 148
Montenegro Montenegro 39 0% 30
Mongolia Mongolia 35.9 0% 33
Mozambique Mozambique 1.7 0% 141
Mauritania Mauritania 2.36 0% 128
Mauritius Mauritius 1.49 +0.496% 149
Malawi Malawi 3.52 0% 121
Malaysia Malaysia 29.9 0% 39
Namibia Namibia 4.86 0% 107
Niger Niger 1.5 0% 147
Nigeria Nigeria 15.8 0% 65
Nicaragua Nicaragua 0.0487 0% 170
Netherlands Netherlands 73.5 +2.68% 7
Norway Norway 40.5 +1.54% 29
Nepal Nepal 0.311 0% 164
New Zealand New Zealand 24.2 0% 44
Oman Oman 12.4 0% 72
Pakistan Pakistan 0.763 0% 159
Panama Panama 0.512 0% 161
Peru Peru 9.11 0% 84
Philippines Philippines 13.4 +10.6% 68
Papua New Guinea Papua New Guinea 42.7 0% 26
Poland Poland 64.5 +1.32% 13
Puerto Rico Puerto Rico 72.2 0% 9
North Korea North Korea 13.2 0% 69
Portugal Portugal 29.8 0% 40
Paraguay Paraguay 6.38 0% 97
Palestinian Territories Palestinian Territories 8.9 +14.3% 85
Qatar Qatar 4.3 -2.56% 113
Romania Romania 52.3 -4.18% 18
Russia Russia 44.8 0% 25
Rwanda Rwanda 1.64 -1.56% 143
Saudi Arabia Saudi Arabia 5.39 0% 101
Sudan Sudan 0.278 0% 165
Senegal Senegal 0.0468 0% 171
Singapore Singapore 51 0% 19
Sierra Leone Sierra Leone 26.2 0% 43
El Salvador El Salvador 19 -14.2% 56
Somalia Somalia 0.0606 0% 169
Serbia Serbia 73.9 -1.35% 6
South Sudan South Sudan 34.2 0% 34
São Tomé & Príncipe São Tomé & Príncipe 1.47 0% 150
Suriname Suriname 22 0% 47
Slovakia Slovakia 41.9 +0.0727% 27
Slovenia Slovenia 81.1 -2.02% 3
Sweden Sweden 61.3 +20.1% 15
Eswatini Eswatini 1.94 0% 136
Seychelles Seychelles 27.7 0% 41
Syria Syria 3.67 0% 119
Chad Chad 11.8 0% 75
Togo Togo 2.83 0% 126
Thailand Thailand 4.85 0% 108
Tajikistan Tajikistan 16.3 0% 64
Turkmenistan Turkmenistan 4.64 +51% 110
Timor-Leste Timor-Leste 0.171 0% 167
Trinidad & Tobago Trinidad & Tobago 33.6 0% 36
Tunisia Tunisia 1.73 0% 140
Turkey Turkey 2 +6.29% 135
Tanzania Tanzania 0.482 0% 163
Uganda Uganda 7.85 0% 87
Ukraine Ukraine 40.9 +0.0101% 28
Uruguay Uruguay 2.19 0% 132
United States United States 47.2 0% 23
Uzbekistan Uzbekistan 4.14 +19.1% 114
St. Vincent & Grenadines St. Vincent & Grenadines 0.0235 0% 172
Venezuela Venezuela 3.51 0% 122
Vietnam Vietnam 3.75 0% 117
Yemen Yemen 1.82 0% 139
South Africa South Africa 21.2 -0.347% 50
Zambia Zambia 8.27 0% 86
Zimbabwe Zimbabwe 1.66 0% 142

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'ER.H2O.FWIN.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'ER.H2O.FWIN.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))